123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Copyright ©2017 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package cmplx64
- import math "gonum.org/v1/gonum/internal/math32"
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
- // The go code is a simplified version of the original C.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- // Complex square root
- //
- // DESCRIPTION:
- //
- // If z = x + iy, r = |z|, then
- //
- // 1/2
- // Re w = [ (r + x)/2 ] ,
- //
- // 1/2
- // Im w = [ (r - x)/2 ] .
- //
- // Cancelation error in r-x or r+x is avoided by using the
- // identity 2 Re w Im w = y.
- //
- // Note that -w is also a square root of z. The root chosen
- // is always in the right half plane and Im w has the same sign as y.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 25000 3.2e-17 9.6e-18
- // IEEE -10,+10 1,000,000 2.9e-16 6.1e-17
- // Sqrt returns the square root of x.
- // The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
- func Sqrt(x complex64) complex64 {
- if imag(x) == 0 {
- if real(x) == 0 {
- return complex(0, 0)
- }
- if real(x) < 0 {
- return complex(0, math.Sqrt(-real(x)))
- }
- return complex(math.Sqrt(real(x)), 0)
- }
- if real(x) == 0 {
- if imag(x) < 0 {
- r := math.Sqrt(-0.5 * imag(x))
- return complex(r, -r)
- }
- r := math.Sqrt(0.5 * imag(x))
- return complex(r, r)
- }
- a := real(x)
- b := imag(x)
- var scale float32
- // Rescale to avoid internal overflow or underflow.
- if math.Abs(a) > 4 || math.Abs(b) > 4 {
- a *= 0.25
- b *= 0.25
- scale = 2
- } else {
- a *= 1.8014398509481984e16 // 2**54
- b *= 1.8014398509481984e16
- scale = 7.450580596923828125e-9 // 2**-27
- }
- r := math.Hypot(a, b)
- var t float32
- if a > 0 {
- t = math.Sqrt(0.5*r + 0.5*a)
- r = scale * math.Abs((0.5*b)/t)
- t *= scale
- } else {
- r = math.Sqrt(0.5*r - 0.5*a)
- t = scale * math.Abs((0.5*b)/r)
- r *= scale
- }
- if b < 0 {
- return complex(t, -r)
- }
- return complex(t, r)
- }
|