| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- // Copyright ©2015 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package gonum
- import (
- "gonum.org/v1/gonum/blas"
- "gonum.org/v1/gonum/blas/blas64"
- )
- // Dlabrd reduces the first NB rows and columns of a real general m×n matrix
- // A to upper or lower bidiagonal form by an orthogonal transformation
- // Q**T * A * P
- // If m >= n, A is reduced to upper bidiagonal form and upon exit the elements
- // on and below the diagonal in the first nb columns represent the elementary
- // reflectors, and the elements above the diagonal in the first nb rows represent
- // the matrix P. If m < n, A is reduced to lower bidiagonal form and the elements
- // P is instead stored above the diagonal.
- //
- // The reduction to bidiagonal form is stored in d and e, where d are the diagonal
- // elements, and e are the off-diagonal elements.
- //
- // The matrices Q and P are products of elementary reflectors
- // Q = H_0 * H_1 * ... * H_{nb-1}
- // P = G_0 * G_1 * ... * G_{nb-1}
- // where
- // H_i = I - tauQ[i] * v_i * v_iᵀ
- // G_i = I - tauP[i] * u_i * u_iᵀ
- //
- // As an example, on exit the entries of A when m = 6, n = 5, and nb = 2
- // [ 1 1 u1 u1 u1]
- // [v1 1 1 u2 u2]
- // [v1 v2 a a a]
- // [v1 v2 a a a]
- // [v1 v2 a a a]
- // [v1 v2 a a a]
- // and when m = 5, n = 6, and nb = 2
- // [ 1 u1 u1 u1 u1 u1]
- // [ 1 1 u2 u2 u2 u2]
- // [v1 1 a a a a]
- // [v1 v2 a a a a]
- // [v1 v2 a a a a]
- //
- // Dlabrd also returns the matrices X and Y which are used with U and V to
- // apply the transformation to the unreduced part of the matrix
- // A := A - V*Yᵀ - X*Uᵀ
- // and returns the matrices X and Y which are needed to apply the
- // transformation to the unreduced part of A.
- //
- // X is an m×nb matrix, Y is an n×nb matrix. d, e, taup, and tauq must all have
- // length at least nb. Dlabrd will panic if these size constraints are violated.
- //
- // Dlabrd is an internal routine. It is exported for testing purposes.
- func (impl Implementation) Dlabrd(m, n, nb int, a []float64, lda int, d, e, tauQ, tauP, x []float64, ldx int, y []float64, ldy int) {
- switch {
- case m < 0:
- panic(mLT0)
- case n < 0:
- panic(nLT0)
- case nb < 0:
- panic(nbLT0)
- case nb > n:
- panic(nbGTN)
- case nb > m:
- panic(nbGTM)
- case lda < max(1, n):
- panic(badLdA)
- case ldx < max(1, nb):
- panic(badLdX)
- case ldy < max(1, nb):
- panic(badLdY)
- }
- if m == 0 || n == 0 || nb == 0 {
- return
- }
- switch {
- case len(a) < (m-1)*lda+n:
- panic(shortA)
- case len(d) < nb:
- panic(shortD)
- case len(e) < nb:
- panic(shortE)
- case len(tauQ) < nb:
- panic(shortTauQ)
- case len(tauP) < nb:
- panic(shortTauP)
- case len(x) < (m-1)*ldx+nb:
- panic(shortX)
- case len(y) < (n-1)*ldy+nb:
- panic(shortY)
- }
- bi := blas64.Implementation()
- if m >= n {
- // Reduce to upper bidiagonal form.
- for i := 0; i < nb; i++ {
- bi.Dgemv(blas.NoTrans, m-i, i, -1, a[i*lda:], lda, y[i*ldy:], 1, 1, a[i*lda+i:], lda)
- bi.Dgemv(blas.NoTrans, m-i, i, -1, x[i*ldx:], ldx, a[i:], lda, 1, a[i*lda+i:], lda)
- a[i*lda+i], tauQ[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min(i+1, m-1)*lda+i:], lda)
- d[i] = a[i*lda+i]
- if i < n-1 {
- // Compute Y[i+1:n, i].
- a[i*lda+i] = 1
- bi.Dgemv(blas.Trans, m-i, n-i-1, 1, a[i*lda+i+1:], lda, a[i*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy)
- bi.Dgemv(blas.Trans, m-i, i, 1, a[i*lda:], lda, a[i*lda+i:], lda, 0, y[i:], ldy)
- bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy)
- bi.Dgemv(blas.Trans, m-i, i, 1, x[i*ldx:], ldx, a[i*lda+i:], lda, 0, y[i:], ldy)
- bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy)
- bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy)
- // Update A[i, i+1:n].
- bi.Dgemv(blas.NoTrans, n-i-1, i+1, -1, y[(i+1)*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i+1:], 1)
- bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, x[i*ldx:], 1, 1, a[i*lda+i+1:], 1)
- // Generate reflection P[i] to annihilate A[i, i+2:n].
- a[i*lda+i+1], tauP[i] = impl.Dlarfg(n-i-1, a[i*lda+i+1], a[i*lda+min(i+2, n-1):], 1)
- e[i] = a[i*lda+i+1]
- a[i*lda+i+1] = 1
- // Compute X[i+1:m, i].
- bi.Dgemv(blas.NoTrans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[i*lda+i+1:], 1, 0, x[(i+1)*ldx+i:], ldx)
- bi.Dgemv(blas.Trans, n-i-1, i+1, 1, y[(i+1)*ldy:], ldy, a[i*lda+i+1:], 1, 0, x[i:], ldx)
- bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx)
- bi.Dgemv(blas.NoTrans, i, n-i-1, 1, a[i+1:], lda, a[i*lda+i+1:], 1, 0, x[i:], ldx)
- bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx)
- bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx)
- }
- }
- return
- }
- // Reduce to lower bidiagonal form.
- for i := 0; i < nb; i++ {
- // Update A[i,i:n]
- bi.Dgemv(blas.NoTrans, n-i, i, -1, y[i*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i:], 1)
- bi.Dgemv(blas.Trans, i, n-i, -1, a[i:], lda, x[i*ldx:], 1, 1, a[i*lda+i:], 1)
- // Generate reflection P[i] to annihilate A[i, i+1:n]
- a[i*lda+i], tauP[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1)
- d[i] = a[i*lda+i]
- if i < m-1 {
- a[i*lda+i] = 1
- // Compute X[i+1:m, i].
- bi.Dgemv(blas.NoTrans, m-i-1, n-i, 1, a[(i+1)*lda+i:], lda, a[i*lda+i:], 1, 0, x[(i+1)*ldx+i:], ldx)
- bi.Dgemv(blas.Trans, n-i, i, 1, y[i*ldy:], ldy, a[i*lda+i:], 1, 0, x[i:], ldx)
- bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx)
- bi.Dgemv(blas.NoTrans, i, n-i, 1, a[i:], lda, a[i*lda+i:], 1, 0, x[i:], ldx)
- bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx)
- bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx)
- // Update A[i+1:m, i].
- bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, y[i*ldy:], 1, 1, a[(i+1)*lda+i:], lda)
- bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, x[(i+1)*ldx:], ldx, a[i:], lda, 1, a[(i+1)*lda+i:], lda)
- // Generate reflection Q[i] to annihilate A[i+2:m, i].
- a[(i+1)*lda+i], tauQ[i] = impl.Dlarfg(m-i-1, a[(i+1)*lda+i], a[min(i+2, m-1)*lda+i:], lda)
- e[i] = a[(i+1)*lda+i]
- a[(i+1)*lda+i] = 1
- // Compute Y[i+1:n, i].
- bi.Dgemv(blas.Trans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy)
- bi.Dgemv(blas.Trans, m-i-1, i, 1, a[(i+1)*lda:], lda, a[(i+1)*lda+i:], lda, 0, y[i:], ldy)
- bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy)
- bi.Dgemv(blas.Trans, m-i-1, i+1, 1, x[(i+1)*ldx:], ldx, a[(i+1)*lda+i:], lda, 0, y[i:], ldy)
- bi.Dgemv(blas.Trans, i+1, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy)
- bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy)
- }
- }
- }
|