| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- // Copyright ©2015 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package gonum
- import "gonum.org/v1/gonum/blas"
- // Dgeqr2 computes a QR factorization of the m×n matrix A.
- //
- // In a QR factorization, Q is an m×m orthonormal matrix, and R is an
- // upper triangular m×n matrix.
- //
- // A is modified to contain the information to construct Q and R.
- // The upper triangle of a contains the matrix R. The lower triangular elements
- // (not including the diagonal) contain the elementary reflectors. tau is modified
- // to contain the reflector scales. tau must have length at least min(m,n), and
- // this function will panic otherwise.
- //
- // The ith elementary reflector can be explicitly constructed by first extracting
- // the
- // v[j] = 0 j < i
- // v[j] = 1 j == i
- // v[j] = a[j*lda+i] j > i
- // and computing H_i = I - tau[i] * v * vᵀ.
- //
- // The orthonormal matrix Q can be constructed from a product of these elementary
- // reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n).
- //
- // work is temporary storage of length at least n and this function will panic otherwise.
- //
- // Dgeqr2 is an internal routine. It is exported for testing purposes.
- func (impl Implementation) Dgeqr2(m, n int, a []float64, lda int, tau, work []float64) {
- // TODO(btracey): This is oriented such that columns of a are eliminated.
- // This likely could be re-arranged to take better advantage of row-major
- // storage.
- switch {
- case m < 0:
- panic(mLT0)
- case n < 0:
- panic(nLT0)
- case lda < max(1, n):
- panic(badLdA)
- case len(work) < n:
- panic(shortWork)
- }
- // Quick return if possible.
- k := min(m, n)
- if k == 0 {
- return
- }
- switch {
- case len(a) < (m-1)*lda+n:
- panic(shortA)
- case len(tau) < k:
- panic(shortTau)
- }
- for i := 0; i < k; i++ {
- // Generate elementary reflector H_i.
- a[i*lda+i], tau[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min((i+1), m-1)*lda+i:], lda)
- if i < n-1 {
- aii := a[i*lda+i]
- a[i*lda+i] = 1
- impl.Dlarf(blas.Left, m-i, n-i-1,
- a[i*lda+i:], lda,
- tau[i],
- a[i*lda+i+1:], lda,
- work)
- a[i*lda+i] = aii
- }
- }
- }
|