| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- // Copyright ©2016 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package gonum
- import "gonum.org/v1/gonum/blas"
- // Dgehd2 reduces a block of a general n×n matrix A to upper Hessenberg form H
- // by an orthogonal similarity transformation Qᵀ * A * Q = H.
- //
- // The matrix Q is represented as a product of (ihi-ilo) elementary
- // reflectors
- // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
- // Each H_i has the form
- // H_i = I - tau[i] * v * vᵀ
- // where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
- // v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
- //
- // On entry, a contains the n×n general matrix to be reduced. On return, the
- // upper triangle and the first subdiagonal of A are overwritten with the upper
- // Hessenberg matrix H, and the elements below the first subdiagonal, with the
- // slice tau, represent the orthogonal matrix Q as a product of elementary
- // reflectors.
- //
- // The contents of A are illustrated by the following example, with n = 7, ilo =
- // 1 and ihi = 5.
- // On entry,
- // [ a a a a a a a ]
- // [ a a a a a a ]
- // [ a a a a a a ]
- // [ a a a a a a ]
- // [ a a a a a a ]
- // [ a a a a a a ]
- // [ a ]
- // on return,
- // [ a a h h h h a ]
- // [ a h h h h a ]
- // [ h h h h h h ]
- // [ v1 h h h h h ]
- // [ v1 v2 h h h h ]
- // [ v1 v2 v3 h h h ]
- // [ a ]
- // where a denotes an element of the original matrix A, h denotes a
- // modified element of the upper Hessenberg matrix H, and vi denotes an
- // element of the vector defining H_i.
- //
- // ilo and ihi determine the block of A that will be reduced to upper Hessenberg
- // form. It must hold that 0 <= ilo <= ihi <= max(0, n-1), otherwise Dgehd2 will
- // panic.
- //
- // On return, tau will contain the scalar factors of the elementary reflectors.
- // It must have length equal to n-1, otherwise Dgehd2 will panic.
- //
- // work must have length at least n, otherwise Dgehd2 will panic.
- //
- // Dgehd2 is an internal routine. It is exported for testing purposes.
- func (impl Implementation) Dgehd2(n, ilo, ihi int, a []float64, lda int, tau, work []float64) {
- switch {
- case n < 0:
- panic(nLT0)
- case ilo < 0 || max(0, n-1) < ilo:
- panic(badIlo)
- case ihi < min(ilo, n-1) || n <= ihi:
- panic(badIhi)
- case lda < max(1, n):
- panic(badLdA)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- switch {
- case len(a) < (n-1)*lda+n:
- panic(shortA)
- case len(tau) != n-1:
- panic(badLenTau)
- case len(work) < n:
- panic(shortWork)
- }
- for i := ilo; i < ihi; i++ {
- // Compute elementary reflector H_i to annihilate A[i+2:ihi+1,i].
- var aii float64
- aii, tau[i] = impl.Dlarfg(ihi-i, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
- a[(i+1)*lda+i] = 1
- // Apply H_i to A[0:ihi+1,i+1:ihi+1] from the right.
- impl.Dlarf(blas.Right, ihi+1, ihi-i, a[(i+1)*lda+i:], lda, tau[i], a[i+1:], lda, work)
- // Apply H_i to A[i+1:ihi+1,i+1:n] from the left.
- impl.Dlarf(blas.Left, ihi-i, n-i-1, a[(i+1)*lda+i:], lda, tau[i], a[(i+1)*lda+i+1:], lda, work)
- a[(i+1)*lda+i] = aii
- }
- }
|