widedeep_v13_2.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. """
  9. 1.删除容易导致偏差的viewall特征
  10. 2.删除分桶不均匀的cpa特征
  11. 3.减少dense特征
  12. 4.增加U-I交叉统计
  13. 5.增加线性部分dense
  14. 6.减少wide部分embedding
  15. 7.减少部分bucket size
  16. """
  17. raw_input = open("data_fields_v3.config").readlines()
  18. input_fields = dict(
  19. map(lambda x: (x[0], x[1]),
  20. map(lambda x: x.strip().split(' '), raw_input)))
  21. def read_features(filename, excludes=None):
  22. features = open(filename).readlines()
  23. features = [name.strip().lower() for name in features]
  24. if excludes:
  25. for x in excludes:
  26. if x in features:
  27. features.remove(x)
  28. return features
  29. exclude_features = ['viewall', 'cpa']
  30. dense_features = read_features("features_top300.config", exclude_features)
  31. top_dense_features = read_features('features_top50.config', exclude_features)
  32. sparse_features = [
  33. "cid", "adid", "adverid",
  34. "region", "city", "brand",
  35. "vid", "cate1", "cate2",
  36. "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split", "user_has_conver_1y",
  37. "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
  38. "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
  39. "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
  40. "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
  41. "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
  42. "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
  43. ]
  44. tag_features = [
  45. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  46. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  47. ]
  48. seq_features = [
  49. "user_cid_click_list", "user_cid_conver_list"
  50. ]
  51. input_type_map = {
  52. 'BIGINT': 'INT64',
  53. 'DOUBLE': 'DOUBLE',
  54. 'STRING': 'STRING'
  55. }
  56. bucket_size_map = {
  57. 'adverid': 100000,
  58. 'region': 1000,
  59. 'city': 10000,
  60. 'brand': 10000,
  61. 'cate1': 10000,
  62. 'cate2': 10000,
  63. 'apptype': 1000,
  64. 'hour': 1000, # 实际上可以直接指定词表
  65. 'hour_quarter': 4000,
  66. 'root_source_scene': 100,
  67. 'root_source_channel': 1000,
  68. 'is_first_layer': 100,
  69. 'user_has_conver_1y': 100,
  70. }
  71. print("""train_config {
  72. optimizer_config {
  73. adam_optimizer {
  74. learning_rate {
  75. constant_learning_rate {
  76. learning_rate: 0.0010
  77. }
  78. }
  79. }
  80. use_moving_average: false
  81. }
  82. optimizer_config {
  83. adam_optimizer {
  84. learning_rate {
  85. constant_learning_rate {
  86. learning_rate: 0.0006
  87. }
  88. }
  89. }
  90. use_moving_average: false
  91. }
  92. optimizer_config {
  93. adam_optimizer {
  94. learning_rate {
  95. constant_learning_rate {
  96. learning_rate: 0.002
  97. }
  98. }
  99. }
  100. use_moving_average: false
  101. }
  102. num_steps: 200000
  103. sync_replicas: true
  104. save_checkpoints_steps: 1100
  105. log_step_count_steps: 100
  106. save_summary_steps: 100
  107. }
  108. eval_config {
  109. metrics_set {
  110. auc {
  111. }
  112. }
  113. eval_online: true
  114. eval_interval_secs: 120
  115. }
  116. data_config {
  117. batch_size: 512
  118. num_epochs: 1
  119. """)
  120. for name in input_fields:
  121. input_type = input_type_map[input_fields[name]]
  122. default_spec = ''
  123. if name in dense_features:
  124. default_spec = '\n default_val: "0"'
  125. print(f""" input_fields {{
  126. input_name: "{name}"
  127. input_type: {input_type}{default_spec}
  128. }}""")
  129. # default_val: "0"
  130. print(""" label_fields: "has_conversion"
  131. prefetch_size: 32
  132. input_type: OdpsInputV2
  133. }
  134. """)
  135. for name in dense_features:
  136. print(f"""feature_configs {{
  137. input_names: "{name}"
  138. feature_type: RawFeature
  139. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  140. embedding_dim: 6
  141. }}""")
  142. for name in sparse_features:
  143. bucket_size = bucket_size_map.get(name, 1000000)
  144. print(f"""feature_configs {{
  145. input_names: "{name}"
  146. feature_type: IdFeature
  147. hash_bucket_size: {bucket_size}
  148. embedding_dim: 6
  149. }}""")
  150. for name in tag_features + seq_features:
  151. bucket_size = bucket_size_map.get(name, 1000000)
  152. print(f"""feature_configs {{
  153. input_names: "{name}"
  154. feature_type: TagFeature
  155. hash_bucket_size: {bucket_size}
  156. embedding_dim: 6
  157. separator: ','
  158. }}""")
  159. def wide_and_deep():
  160. print("""
  161. model_config {
  162. model_class: "WideAndDeep"
  163. feature_groups: {
  164. group_name: 'wide'""")
  165. for name in dense_features + sparse_features:
  166. print(f""" feature_names: '{name}'""")
  167. print(""" wide_deep: WIDE
  168. }
  169. feature_groups: {
  170. group_name: 'deep'""")
  171. for name in dense_features + sparse_features + tag_features + seq_features:
  172. print(f""" feature_names: '{name}'""")
  173. print(""" wide_deep: DEEP
  174. }
  175. wide_and_deep {
  176. wide_output_dim: 8
  177. dnn {
  178. hidden_units: [256, 128, 64]
  179. }
  180. final_dnn {
  181. hidden_units: [64, 32]
  182. }
  183. l2_regularization: 1e-5
  184. }
  185. embedding_regularization: 1e-6
  186. }""")
  187. def deep_fm():
  188. print("""
  189. model_config {
  190. model_class: "DeepFM"
  191. feature_groups: {
  192. group_name: 'wide'""")
  193. for name in dense_features + sparse_features:
  194. print(f""" feature_names: '{name}'""")
  195. print(""" wide_deep: WIDE
  196. }
  197. feature_groups: {
  198. group_name: 'deep'""")
  199. for name in top_dense_features + sparse_features + tag_features + seq_features:
  200. print(f""" feature_names: '{name}'""")
  201. print(""" wide_deep: DEEP
  202. }
  203. deepfm {
  204. wide_output_dim: 2
  205. dnn {
  206. hidden_units: [256, 128, 64]
  207. }
  208. final_dnn {
  209. hidden_units: [64, 32]
  210. }
  211. l2_regularization: 1e-5
  212. }
  213. embedding_regularization: 1e-6
  214. }""")
  215. def fm():
  216. print("""
  217. model_config {
  218. model_class: "FM"
  219. feature_groups: {
  220. group_name: 'wide'""")
  221. for name in dense_features:
  222. print(f""" feature_names: '{name}'""")
  223. print(""" wide_deep: WIDE
  224. }
  225. feature_groups: {
  226. group_name: 'deep'""")
  227. for name in dense_features:
  228. print(f""" feature_names: '{name}'""")
  229. print(""" wide_deep: DEEP
  230. }
  231. fm {
  232. }
  233. embedding_regularization: 1e-5
  234. }""")
  235. def config_export():
  236. print("""
  237. export_config {
  238. exporter_type: "final"
  239. }
  240. """)
  241. deep_fm()
  242. config_export()