widedeep_v12_9.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. """
  9. 1.删除容易导致偏差的viewall特征
  10. 2.删除分桶不均匀的cpa特征
  11. 3.减少dense特征
  12. """
  13. raw_input = open("data_fields_v3.config").readlines()
  14. input_fields = dict(
  15. map(lambda x: (x[0], x[1]),
  16. map(lambda x: x.strip().split(' '), raw_input)))
  17. def read_features(filename, excludes=None):
  18. features = open(filename).readlines()
  19. features = [name.strip().lower() for name in features]
  20. if excludes:
  21. for x in excludes:
  22. if x in features:
  23. features.remove(x)
  24. return features
  25. exclude_features = ['viewall', 'cpa']
  26. dense_features = read_features("features_top300.config", exclude_features)[:150]
  27. top_dense_features = read_features('features_top50.config', exclude_features)
  28. sparse_features = [
  29. "cid", "adid", "adverid",
  30. "region", "city", "brand",
  31. "vid", "cate1", "cate2",
  32. "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split", "user_has_conver_1y",
  33. "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
  34. "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
  35. "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
  36. "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
  37. "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
  38. "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
  39. ]
  40. tag_features = [
  41. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  42. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  43. ]
  44. seq_features = [
  45. "user_cid_click_list", "user_cid_conver_list"
  46. ]
  47. input_type_map = {
  48. 'BIGINT': 'INT64',
  49. 'DOUBLE': 'DOUBLE',
  50. 'STRING': 'STRING'
  51. }
  52. print("""train_config {
  53. optimizer_config {
  54. adam_optimizer {
  55. learning_rate {
  56. constant_learning_rate {
  57. learning_rate: 0.0010
  58. }
  59. }
  60. }
  61. use_moving_average: false
  62. }
  63. optimizer_config {
  64. adam_optimizer {
  65. learning_rate {
  66. constant_learning_rate {
  67. learning_rate: 0.0006
  68. }
  69. }
  70. }
  71. use_moving_average: false
  72. }
  73. optimizer_config {
  74. adam_optimizer {
  75. learning_rate {
  76. constant_learning_rate {
  77. learning_rate: 0.002
  78. }
  79. }
  80. }
  81. use_moving_average: false
  82. }
  83. num_steps: 200000
  84. sync_replicas: true
  85. save_checkpoints_steps: 1100
  86. log_step_count_steps: 100
  87. save_summary_steps: 100
  88. }
  89. eval_config {
  90. metrics_set {
  91. auc {
  92. }
  93. }
  94. eval_online: true
  95. eval_interval_secs: 120
  96. }
  97. data_config {
  98. batch_size: 512
  99. num_epochs: 1
  100. """)
  101. for name in input_fields:
  102. input_type = input_type_map[input_fields[name]]
  103. default_spec = ''
  104. if name in dense_features:
  105. default_spec = '\n default_val: "0"'
  106. print(f""" input_fields {{
  107. input_name: "{name}"
  108. input_type: {input_type}{default_spec}
  109. }}""")
  110. # default_val: "0"
  111. print(""" label_fields: "has_conversion"
  112. prefetch_size: 32
  113. input_type: OdpsInputV2
  114. }
  115. """)
  116. for name in dense_features:
  117. print(f"""feature_configs {{
  118. input_names: "{name}"
  119. feature_type: RawFeature
  120. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  121. embedding_dim: 6
  122. }}""")
  123. for name in sparse_features:
  124. print(f"""feature_configs {{
  125. input_names: "{name}"
  126. feature_type: IdFeature
  127. hash_bucket_size: 1000000
  128. embedding_dim: 6
  129. }}""")
  130. for name in tag_features + seq_features:
  131. print(f"""feature_configs {{
  132. input_names: "{name}"
  133. feature_type: TagFeature
  134. hash_bucket_size: 1000000
  135. embedding_dim: 6
  136. separator: ','
  137. }}""")
  138. def wide_and_deep():
  139. print("""
  140. model_config {
  141. model_class: "WideAndDeep"
  142. feature_groups: {
  143. group_name: 'wide'""")
  144. for name in dense_features + sparse_features:
  145. print(f""" feature_names: '{name}'""")
  146. print(""" wide_deep: WIDE
  147. }
  148. feature_groups: {
  149. group_name: 'deep'""")
  150. for name in dense_features + sparse_features + tag_features + seq_features:
  151. print(f""" feature_names: '{name}'""")
  152. print(""" wide_deep: DEEP
  153. }
  154. wide_and_deep {
  155. wide_output_dim: 8
  156. dnn {
  157. hidden_units: [256, 128, 64]
  158. }
  159. final_dnn {
  160. hidden_units: [64, 32]
  161. }
  162. l2_regularization: 1e-5
  163. }
  164. embedding_regularization: 1e-6
  165. }""")
  166. def deep_fm():
  167. print("""
  168. model_config {
  169. model_class: "DeepFM"
  170. feature_groups: {
  171. group_name: 'wide'""")
  172. for name in dense_features + sparse_features:
  173. print(f""" feature_names: '{name}'""")
  174. print(""" wide_deep: WIDE
  175. }
  176. feature_groups: {
  177. group_name: 'deep'""")
  178. for name in top_dense_features + sparse_features + tag_features + seq_features:
  179. print(f""" feature_names: '{name}'""")
  180. print(""" wide_deep: DEEP
  181. }
  182. deepfm {
  183. wide_output_dim: 8
  184. dnn {
  185. hidden_units: [256, 128, 64]
  186. }
  187. final_dnn {
  188. hidden_units: [64, 32]
  189. }
  190. l2_regularization: 1e-5
  191. }
  192. embedding_regularization: 1e-6
  193. }""")
  194. def fm():
  195. print("""
  196. model_config {
  197. model_class: "FM"
  198. feature_groups: {
  199. group_name: 'wide'""")
  200. for name in dense_features:
  201. print(f""" feature_names: '{name}'""")
  202. print(""" wide_deep: WIDE
  203. }
  204. feature_groups: {
  205. group_name: 'deep'""")
  206. for name in dense_features:
  207. print(f""" feature_names: '{name}'""")
  208. print(""" wide_deep: DEEP
  209. }
  210. fm {
  211. }
  212. embedding_regularization: 1e-5
  213. }""")
  214. def config_export():
  215. print("""
  216. export_config {
  217. exporter_type: "final"
  218. }
  219. """)
  220. deep_fm()
  221. config_export()