widedeep_v12_1.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. raw_input = open("data_fields_v3.config").readlines()
  9. input_fields = dict(
  10. map(lambda x: (x[0], x[1]),
  11. map(lambda x: x.strip().split(' '), raw_input)))
  12. dense_features = open("features_top300.config").readlines()
  13. dense_features = [name.strip().lower() for name in dense_features]
  14. top_dense_features = open('features_top100.config').readlines()
  15. top_dense_features = [name.strip().lower() for name in top_dense_features]
  16. sparse_features = [
  17. "cid", "adid", "adverid",
  18. "region", "city", "brand",
  19. "vid", "cate1", "cate2",
  20. ]
  21. tag_features = [
  22. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  23. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  24. ]
  25. seq_features = [
  26. "user_cid_click_list", "user_cid_conver_list"
  27. ]
  28. input_type_map = {
  29. 'BIGINT': 'INT64',
  30. 'DOUBLE': 'DOUBLE',
  31. 'STRING': 'STRING'
  32. }
  33. print("""train_config {
  34. optimizer_config {
  35. adam_optimizer {
  36. learning_rate {
  37. constant_learning_rate {
  38. learning_rate: 0.0010
  39. }
  40. }
  41. }
  42. use_moving_average: false
  43. }
  44. optimizer_config {
  45. adam_optimizer {
  46. learning_rate {
  47. constant_learning_rate {
  48. learning_rate: 0.0006
  49. }
  50. }
  51. }
  52. use_moving_average: false
  53. }
  54. optimizer_config {
  55. adam_optimizer {
  56. learning_rate {
  57. constant_learning_rate {
  58. learning_rate: 0.002
  59. }
  60. }
  61. }
  62. use_moving_average: false
  63. }
  64. num_steps: 200000
  65. sync_replicas: true
  66. save_checkpoints_steps: 1100
  67. log_step_count_steps: 100
  68. save_summary_steps: 100
  69. }
  70. eval_config {
  71. metrics_set {
  72. auc {
  73. }
  74. }
  75. eval_online: true
  76. eval_interval_secs: 120
  77. }
  78. data_config {
  79. batch_size: 512
  80. num_epochs: 1
  81. """)
  82. for name in input_fields:
  83. input_type = input_type_map[input_fields[name]]
  84. default_spec = ''
  85. if name in dense_features:
  86. default_spec = '\n default_val: "0"'
  87. print(f""" input_fields {{
  88. input_name: "{name}"
  89. input_type: {input_type}{default_spec}
  90. }}""")
  91. # default_val: "0"
  92. print(""" label_fields: "has_conversion"
  93. prefetch_size: 32
  94. input_type: OdpsInputV2
  95. }
  96. """)
  97. for name in dense_features:
  98. print(f"""feature_configs {{
  99. input_names: "{name}"
  100. feature_type: RawFeature
  101. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  102. embedding_dim: 6
  103. }}""")
  104. for name in sparse_features:
  105. print(f"""feature_configs {{
  106. input_names: "{name}"
  107. feature_type: IdFeature
  108. hash_bucket_size: 1000000
  109. embedding_dim: 6
  110. }}""")
  111. for name in tag_features + seq_features:
  112. print(f"""feature_configs {{
  113. input_names: "{name}"
  114. feature_type: TagFeature
  115. hash_bucket_size: 1000000
  116. embedding_dim: 6
  117. separator: ','
  118. }}""")
  119. def wide_and_deep():
  120. print("""
  121. model_config {
  122. model_class: "WideAndDeep"
  123. feature_groups: {
  124. group_name: 'wide'""")
  125. for name in dense_features + sparse_features:
  126. print(f""" feature_names: '{name}'""")
  127. print(""" wide_deep: WIDE
  128. }
  129. feature_groups: {
  130. group_name: 'deep'""")
  131. for name in dense_features + sparse_features + tag_features + seq_features:
  132. print(f""" feature_names: '{name}'""")
  133. print(""" wide_deep: DEEP
  134. }
  135. wide_and_deep {
  136. wide_output_dim: 8
  137. dnn {
  138. hidden_units: [256, 128, 64]
  139. }
  140. final_dnn {
  141. hidden_units: [64, 32]
  142. }
  143. l2_regularization: 1e-5
  144. }
  145. embedding_regularization: 1e-6
  146. }""")
  147. def deep_fm():
  148. print("""
  149. model_config {
  150. model_class: "DeepFM"
  151. feature_groups: {
  152. group_name: 'wide'""")
  153. for name in dense_features + sparse_features:
  154. print(f""" feature_names: '{name}'""")
  155. print(""" wide_deep: WIDE
  156. }
  157. feature_groups: {
  158. group_name: 'deep'""")
  159. for name in top_dense_features + sparse_features + tag_features + seq_features:
  160. print(f""" feature_names: '{name}'""")
  161. print(""" wide_deep: DEEP
  162. }
  163. deepfm {
  164. wide_output_dim: 8
  165. dnn {
  166. hidden_units: [256, 128, 64]
  167. }
  168. final_dnn {
  169. hidden_units: [64, 32]
  170. }
  171. l2_regularization: 1e-5
  172. }
  173. embedding_regularization: 1e-6
  174. }""")
  175. def fm():
  176. print("""
  177. model_config {
  178. model_class: "FM"
  179. feature_groups: {
  180. group_name: 'wide'""")
  181. for name in dense_features:
  182. print(f""" feature_names: '{name}'""")
  183. print(""" wide_deep: WIDE
  184. }
  185. feature_groups: {
  186. group_name: 'deep'""")
  187. for name in dense_features:
  188. print(f""" feature_names: '{name}'""")
  189. print(""" wide_deep: DEEP
  190. }
  191. fm {
  192. }
  193. embedding_regularization: 1e-5
  194. }""")
  195. def config_export():
  196. print("""
  197. export_config {
  198. exporter_type: "final"
  199. }
  200. """)
  201. deep_fm()
  202. config_export()