123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- #! /usr/bin/env python
- # -*- coding: utf-8 -*-
- # vim:fenc=utf-8
- #
- # Copyright © 2025 StrayWarrior <i@straywarrior.com>
- #
- # Distributed under terms of the MIT license.
- from eas_prediction import PredictClient
- from eas_prediction import StringRequest
- from eas_prediction import TFRequest
- from odps import ODPS
- import pandas as pd
- import numpy as np
- from sklearn.metrics import roc_auc_score
- import time
- import hashlib
- import pdb
- import sys
- ODPS_CONFIG = {
- 'ENDPOINT': 'http://service.cn.maxcompute.aliyun.com/api',
- 'ACCESSID': 'LTAIWYUujJAm7CbH',
- 'ACCESSKEY': 'RfSjdiWwED1sGFlsjXv0DlfTnZTG1P',
- }
- sparse_features = [
- 'cid', 'adid', 'adverid',
- 'region', 'city', 'brand',
- 'vid', 'cate1', 'cate2',
- "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
- "user_vid_return_tags_7d", "user_vid_return_tags_14d",
- "user_cid_click_list", "user_cid_conver_list",
- 'apptype' ,'hour' ,'hour_quarter' ,'root_source_scene',
- 'root_source_channel' ,'is_first_layer' ,'title_split' ,'profession',
- "user_vid_share_tags_1d", "user_vid_share_tags_14d", "user_vid_return_cate1_14d", "user_vid_return_cate2_14d", "user_vid_share_cate1_14d", "user_vid_share_cate2_14d",
- "creative_type", "user_has_conver_1y"
- ]
- def get_data():
- odps_conf = ODPS_CONFIG
- o = ODPS(odps_conf['ACCESSID'], odps_conf['ACCESSKEY'], 'loghubods',
- endpoint=odps_conf['ENDPOINT'])
- dense_features = open("features_top300.config").readlines()
- dense_features = [name.strip().lower() for name in dense_features]
- feature_names = ','.join(dense_features + sparse_features)
- partitions = "dt in ('20250529')"
- sql = f''' SELECT {feature_names},has_conversion
- FROM loghubods.ad_easyrec_eval_data_v3_sampled
- WHERE {partitions} AND cid = 17869
- LIMIT 1000
- '''
- data_query_hash = hashlib.sha1(sql.encode("utf-8")).hexdigest()[0:8]
- cache_path = f'ad_data_cache_{data_query_hash}.parquet'
- try:
- df = pd.read_parquet(cache_path)
- except:
- with o.execute_sql(sql).open_reader() as reader:
- df = reader.to_pandas()
- df.to_parquet(cache_path)
- def detect_na_return(col):
- if df[col].dtype == 'int64':
- return 0
- elif df[col].dtype == 'float64':
- return 0.0
- elif col in dense_features:
- return 0.0
- elif col in ('has_conversion', 'has_click'):
- return 0.0
- else:
- return ''
- def handle_nulls(df):
- # 构建填充字典:数值列填0,非数值列填空字符串
- fill_dict = {
- col: detect_na_return(col) for col in df.columns
- }
- return df.fillna(fill_dict)
- df = handle_nulls(df)
- return df
- ENDPOINT = '1894469520484605.cn-hangzhou.pai-eas.aliyuncs.com'
- TOKEN = 'ODI1MmUxODgzZDc3ODM0ZmQwZWU0YTVjZjdlOWVlMGFlZGJjNTlkYQ=='
- SERV_NAME = 'ad_rank_dnn_v11_easyrec'
- TOKEN = 'ZmUxOWY5OGYwYmFkZmU0ZGEyM2E4NTFkZjAwNGU0YWNmZTFhYTRhZg=='
- SERV_NAME = 'ad_rank_dnn_v11_easyrec_test'
- DTYPE_TO_TF_TYPE = {
- 'float64': TFRequest.DT_DOUBLE,
- 'object': TFRequest.DT_STRING,
- 'int64': TFRequest.DT_INT64
- }
- if __name__ == '__main__':
- client = PredictClient(ENDPOINT, SERV_NAME)
- client.set_token(TOKEN)
- client.init()
- df = get_data()
- # df = df.query('user_vid_return_tags_3d.str.len() > 1')
- # df['user_vid_return_tags_3d'] = ''
- # pd.set_option('display.max_rows', None)
- df['vid'] = df['vid'].apply(lambda x: int(x))
- df['cid'] = df['cid'].apply(lambda x: int(x))
- df['adid'] = df['adid'].apply(lambda x: int(x))
- df['adverid'] = df['adverid'].apply(lambda x: int(x))
- df['user_has_conver_1y'] = df['user_has_conver_1y'].apply(lambda x: int(x))
- # print(df[['vid', 'cid', 'adid', 'adverid', 'apptype', 'hour', 'hour_quarter', 'is_first_layer']])
- feature_names = df.columns.tolist()
- user_features = ['viewall', 'ctr_all', 'ecpm_all', 'ctcvr_all', 'clickall', 'converall', 'region', 'city', 'brand',
- "user_vid_return_tags_2h",
- "user_vid_return_tags_1d", "user_vid_return_tags_3d",
- "user_vid_return_tags_7d", "user_vid_return_tags_14d",
- "user_cid_click_list", "user_cid_conver_list"]
- req = TFRequest('serving_default')
- df = df[:100]
- batch_size = len(df)
- for name in feature_names:
- dtype = str(df[name].dtype)
- tf_type = DTYPE_TO_TF_TYPE[dtype]
- values = df[name].tolist()
- if dtype == 'object':
- values = [bytes(x, 'utf-8') for x in values]
- req.add_feed(name, [batch_size], tf_type, values)
- # for name in feature_names:
- # if name in user_features:
- # req.add_feed(name, [1], TFRequest.DT_DOUBLE, [0.80])
- # else:
- # req.add_feed(name, [10], TFRequest.DT_DOUBLE, [0.80] * 10)
- req.add_fetch('probs')
- if 1:
- with open("warmup_widedeep_v12.bin", "wb") as f:
- f.write(req.to_string())
- # 注意: 开启INPUT_TILE=2的优化之后, 上述特征可以只传一个值
- # req.add_feed('user_id', [1], TFRequest.DT_STRING, ['u0001'])
- # req.add_feed('age', [1], TFRequest.DT_FLOAT, [18.0])
- # req.add_feed('item_id', [3], TFRequest.DT_STRING,
- # ['i0001', 'i0002', 'i0003'])
- for x in range(0, 1):
- t1 = time.time()
- resp = client.predict(req)
- t2 = time.time()
- # pdb.set_trace()
- for x in resp.response.outputs['probs'].float_val:
- y = x / (x + (1 - x) / 0.04)
- print((x, y))
- # print(resp.response.outputs['probs'])
- print(f'time: {(t2 - t1) * 1000} ms')
|