123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- #! /usr/bin/env python
- # -*- coding: utf-8 -*-
- # vim:fenc=utf-8
- #
- # Copyright © 2025 StrayWarrior <i@straywarrior.com>
- from eas_prediction import PredictClient
- from eas_prediction import StringRequest
- from eas_prediction import TFRequest
- from odps import ODPS
- import pandas as pd
- import numpy as np
- from sklearn.metrics import roc_auc_score
- import time
- import hashlib
- import pdb
- import sys
- from q_plot_tool import draw_figures
- ODPS_CONFIG = {
- 'ENDPOINT': 'http://service.cn.maxcompute.aliyun.com/api',
- 'ACCESSID': 'LTAIWYUujJAm7CbH',
- 'ACCESSKEY': 'RfSjdiWwED1sGFlsjXv0DlfTnZTG1P',
- }
- sparse_features = [
- 'cid', 'adid', 'adverid',
- 'region', 'city', 'brand',
- 'vid', 'cate1', 'cate2',
- "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
- "user_vid_return_tags_7d", "user_vid_return_tags_14d",
- "user_cid_click_list", "user_cid_conver_list",
- 'apptype' ,'hour' ,'hour_quarter' ,'root_source_scene',
- 'root_source_channel' ,'is_first_layer' ,'title_split' ,'profession',
- "user_vid_share_tags_1d", "user_vid_share_tags_14d", "user_vid_return_cate1_14d", "user_vid_return_cate2_14d", "user_vid_share_cate1_14d", "user_vid_share_cate2_14d",
- "creative_type", "user_has_conver_1y",
- "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
- "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
- "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
- "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
- "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
- "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
- ]
- int_features = [
- "user_has_conver_1y",
- "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
- "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
- "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
- "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
- "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
- "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
- ]
- def get_data():
- odps_conf = ODPS_CONFIG
- o = ODPS(odps_conf['ACCESSID'], odps_conf['ACCESSKEY'], 'loghubods',
- endpoint=odps_conf['ENDPOINT'])
- dense_features = open("features_top300.config").readlines()
- dense_features = [name.strip().lower() for name in dense_features]
- feature_names = ','.join(dense_features + sparse_features)
- partitions = "dt in ('20250620')"
- sql = f''' SELECT {feature_names},has_conversion
- FROM loghubods.ad_easyrec_train_realtime_data_v3_sampled_temp
- WHERE {partitions} AND adverid = '598'
- '''
- # AND ts BETWEEN unix_timestamp('2025-05-14 17:40:00') AND unix_timestamp('2025-05-14 18:00:00')
- data_query_hash = hashlib.sha1(sql.encode("utf-8")).hexdigest()[0:8]
- cache_path = f'ad_data_cache_{data_query_hash}.parquet'
- try:
- df = pd.read_parquet(cache_path)
- except:
- with o.execute_sql(sql).open_reader() as reader:
- df = reader.to_pandas()
- df.to_parquet(cache_path)
- def detect_na_return(col):
- if str(df[col].dtype) in ('int64', 'float64') or col in int_features:
- return 0
- elif col in dense_features:
- return 0.0
- elif col in ('has_conversion', 'has_click'):
- return 0
- else:
- return ''
- def handle_nulls(df):
- # 构建填充字典:数值列填0,非数值列填空字符串
- fill_dict = {
- col: detect_na_return(col) for col in df.columns
- }
- return df.fillna(fill_dict)
- df = handle_nulls(df)
- return df
- ENDPOINT = '1894469520484605.cn-hangzhou.pai-eas.aliyuncs.com'
- TOKEN = 'ODI1MmUxODgzZDc3ODM0ZmQwZWU0YTVjZjdlOWVlMGFlZGJjNTlkYQ=='
- SERV_NAME = 'ad_rank_dnn_v11_easyrec'
- TOKEN = 'ZmUxOWY5OGYwYmFkZmU0ZGEyM2E4NTFkZjAwNGU0YWNmZTFhYTRhZg=='
- SERV_NAME = 'ad_rank_dnn_v11_easyrec_test'
- DTYPE_TO_TF_TYPE = {
- 'float64': TFRequest.DT_DOUBLE,
- 'object': TFRequest.DT_STRING,
- 'int64': TFRequest.DT_INT64
- }
- def permutate_feature(df, column):
- df = df.copy()
- np.random.shuffle(df[column].values)
- return df
- def clear_feature(df, column):
- df = df.copy()
- dense_features = open("features_top300.config").readlines()
- dense_features = [name.strip().lower() for name in dense_features]
- def detect_na_return(col):
- if df[col].dtype == 'int64':
- return 0
- elif df[col].dtype == 'float64':
- return 0.0
- elif col in dense_features:
- return 0.0
- elif col in ('has_conversion', 'has_click'):
- return 0
- else:
- return ''
- zero_value = detect_na_return(column)
- df[column] = zero_value
- return df
- def build_req(df):
- feature_names = df.columns.tolist()
- batch_size = len(df)
- req = TFRequest('serving_default')
- for name in feature_names:
- dtype = str(df[name].dtype)
- tf_type = DTYPE_TO_TF_TYPE[dtype]
- values = df[name].tolist()
- if dtype == 'object':
- values = [bytes(x, 'utf-8') for x in values]
- req.add_feed(name, [batch_size], tf_type, values)
- req.add_fetch('probs')
- return req
- def predict_by_batches(df, batch_size = 512):
- n_samples = len(df)
- batch_num = (n_samples + batch_size - 1) // batch_size
- scores = []
- for i in range(batch_num):
- sub_df = df[i * batch_size : min(n_samples, (i + 1) * batch_size)]
- req = build_req(sub_df)
- resp = client.predict(req)
- scores.extend([x for x in resp.response.outputs['probs'].float_val])
- return scores
- def permutate_feature_and_predict(df):
- base_scores = client.predict(build_req(df)).response.outputs['probs'].float_val
- base_scores = np.array(base_scores)
- base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
- label = df['has_conversion']
- base_auc = roc_auc_score(y_true=label, y_score=base_scores)
- ctcvr = np.sum(label) / len(label)
- print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
- feature_to_test = df.columns
- feature_to_test = ['profession',]
- for column in feature_to_test:
- new_df = clear_feature(df, column)
- scores = predict_by_batches(new_df)
- scores = [x / (x + (1 - x) / 0.04) for x in scores]
- scores = np.array(scores)
- avg_score = np.average(scores)
- avg_abs_diff = np.average(np.abs(scores - base_scores))
- avg_diff = np.average(scores - base_scores)
- new_auc = roc_auc_score(y_true=label, y_score=scores)
- auc_diff = new_auc - base_auc
- print(f'{column}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
- def clear_feature_by_prefix_and_predict(df):
- feature_prefix_list = ["actionstatic","adid","adverid","apptype","b2","b3","b4","b5","b6","b7","b8","brand","cate1","cate2","cid","city","clickall","converall","cpa","creative","ctcvr","ctr","cvr","d1","e1","e2","ecpm","has","hour","incomeall","is","profession","region","root","timediff","title","user","vid","viewall"
- ]
- base_scores = client.predict(build_req(df)).response.outputs['probs'].float_val
- base_scores = np.array(base_scores)
- base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
- label = df['has_conversion']
- try:
- base_auc = roc_auc_score(y_true=label, y_score=base_scores)
- except:
- base_auc = 0
- ctcvr = np.sum(label) / len(label)
- print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
- for prefix in feature_prefix_list:
- new_df = df
- columns_to_clear = [col for col in df.columns if col.startswith(prefix)]
- for column in columns_to_clear:
- new_df = clear_feature(new_df, column)
- scores = predict_by_batches(new_df)
- scores = [x / (x + (1 - x) / 0.04) for x in scores]
- scores = np.array(scores)
- avg_score = np.average(scores)
- avg_abs_diff = np.average(np.abs(scores - base_scores))
- avg_diff = np.average(scores - base_scores)
- try:
- new_auc = roc_auc_score(y_true=label, y_score=scores)
- except:
- new_auc = 0
- auc_diff = new_auc - base_auc
- print(f'{prefix}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
- def clear_feature_and_predict(df):
- base_scores = predict_by_batches(df)
- base_scores = np.array(base_scores)
- # base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
- # print(base_scores)
- label = df['has_conversion']
- ctcvr = np.sum(label) / len(label)
- try:
- base_auc = roc_auc_score(y_true=label, y_score=base_scores)
- except:
- base_auc = 0
- print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
- feature_to_test = [x.lower().strip() for x in open('features_top50.config').readlines()]
- return
- # feature_to_test = sparse_features
- all_clean_df = df.copy()
- for column in feature_to_test:
- all_clean_df = clear_feature(all_clean_df, column)
- # score = client.predict(build_req(all_clean_df)).response.outputs['probs'].float_val
- score = predict_by_batches(all_clean_df)
- score = np.array(score)
- score = score / (score + (1 - score) / 0.04)
- for column in feature_to_test:
- new_df = clear_feature(df, column)
- scores = predict_by_batches(new_df)
- scores = [x / (x + (1 - x) / 0.04) for x in scores]
- scores = np.array(scores)
- avg_score = np.average(scores)
- avg_abs_diff = np.average(np.abs(scores - base_scores))
- avg_diff = np.average(scores - base_scores)
- try:
- new_auc = roc_auc_score(y_true=label, y_score=scores)
- except:
- new_auc = 0
- auc_diff = new_auc - base_auc
- print(f'{column:20}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
- # df_to_draw = pd.DataFrame({
- # 'score': scores,
- # 'label': label
- # })
- # draw_figures(df_to_draw, column, 0.04,
- # filename=f'plots/feature_q_plot_{column}.png')
- if __name__ == '__main__':
- client = PredictClient(ENDPOINT, SERV_NAME)
- client.set_token(TOKEN)
- client.init()
- df = get_data()
- # df = df.query('user_vid_return_tags_3d.str.len() > 1')
- # df['user_vid_return_tags_3d'] = ''
- # pd.set_option('display.max_rows', None)
- df['vid'] = df['vid'].apply(lambda x: int(x))
- df['cid'] = df['cid'].apply(lambda x: int(x))
- df['adid'] = df['adid'].apply(lambda x: int(x))
- df['adverid'] = df['adverid'].apply(lambda x: int(x))
- for feature in int_features:
- df[feature] = df[feature].apply(lambda x: int(x))
- if len(df) == 0:
- print("empty df")
- sys.exit(0)
- print(f'df size: {len(df)}')
- # print(df)
- # print(df[['vid', 'cid', 'adid', 'adverid', 'apptype', 'hour', 'hour_quarter', 'is_first_layer']])
- # clear_feature_and_predict(df)
- # permutate_feature_and_predict(df)
- clear_feature_by_prefix_and_predict(df)
|