inspect_features.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. from eas_prediction import PredictClient
  7. from eas_prediction import StringRequest
  8. from eas_prediction import TFRequest
  9. from odps import ODPS
  10. import pandas as pd
  11. import numpy as np
  12. from sklearn.metrics import roc_auc_score
  13. import time
  14. import hashlib
  15. import pdb
  16. import sys
  17. from q_plot_tool import draw_figures
  18. ODPS_CONFIG = {
  19. 'ENDPOINT': 'http://service.cn.maxcompute.aliyun.com/api',
  20. 'ACCESSID': 'LTAIWYUujJAm7CbH',
  21. 'ACCESSKEY': 'RfSjdiWwED1sGFlsjXv0DlfTnZTG1P',
  22. }
  23. sparse_features = [
  24. 'cid', 'adid', 'adverid',
  25. 'region', 'city', 'brand',
  26. 'vid', 'cate1', 'cate2',
  27. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  28. "user_vid_return_tags_7d", "user_vid_return_tags_14d",
  29. "user_cid_click_list", "user_cid_conver_list",
  30. 'apptype' ,'hour' ,'hour_quarter' ,'root_source_scene',
  31. 'root_source_channel' ,'is_first_layer' ,'title_split' ,'profession',
  32. "user_vid_share_tags_1d", "user_vid_share_tags_14d", "user_vid_return_cate1_14d", "user_vid_return_cate2_14d", "user_vid_share_cate1_14d", "user_vid_share_cate2_14d",
  33. "creative_type", "user_has_conver_1y",
  34. "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
  35. "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
  36. "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
  37. "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
  38. "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
  39. "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
  40. ]
  41. int_features = [
  42. "user_has_conver_1y",
  43. "user_adverid_view_3d", "user_adverid_view_7d", "user_adverid_view_30d",
  44. "user_adverid_click_3d", "user_adverid_click_7d", "user_adverid_click_30d",
  45. "user_adverid_conver_3d", "user_adverid_conver_7d", "user_adverid_conver_30d",
  46. "user_skuid_view_3d", "user_skuid_view_7d", "user_skuid_view_30d",
  47. "user_skuid_click_3d", "user_skuid_click_7d", "user_skuid_click_30d",
  48. "user_skuid_conver_3d", "user_skuid_conver_7d", "user_skuid_conver_30d"
  49. ]
  50. def get_data():
  51. odps_conf = ODPS_CONFIG
  52. o = ODPS(odps_conf['ACCESSID'], odps_conf['ACCESSKEY'], 'loghubods',
  53. endpoint=odps_conf['ENDPOINT'])
  54. dense_features = open("features_top300.config").readlines()
  55. dense_features = [name.strip().lower() for name in dense_features]
  56. feature_names = ','.join(dense_features + sparse_features)
  57. partitions = "dt in ('20250620')"
  58. sql = f''' SELECT {feature_names},has_conversion
  59. FROM loghubods.ad_easyrec_train_realtime_data_v3_sampled_temp
  60. WHERE {partitions} AND adverid = '598'
  61. '''
  62. # AND ts BETWEEN unix_timestamp('2025-05-14 17:40:00') AND unix_timestamp('2025-05-14 18:00:00')
  63. data_query_hash = hashlib.sha1(sql.encode("utf-8")).hexdigest()[0:8]
  64. cache_path = f'ad_data_cache_{data_query_hash}.parquet'
  65. try:
  66. df = pd.read_parquet(cache_path)
  67. except:
  68. with o.execute_sql(sql).open_reader() as reader:
  69. df = reader.to_pandas()
  70. df.to_parquet(cache_path)
  71. def detect_na_return(col):
  72. if str(df[col].dtype) in ('int64', 'float64') or col in int_features:
  73. return 0
  74. elif col in dense_features:
  75. return 0.0
  76. elif col in ('has_conversion', 'has_click'):
  77. return 0
  78. else:
  79. return ''
  80. def handle_nulls(df):
  81. # 构建填充字典:数值列填0,非数值列填空字符串
  82. fill_dict = {
  83. col: detect_na_return(col) for col in df.columns
  84. }
  85. return df.fillna(fill_dict)
  86. df = handle_nulls(df)
  87. return df
  88. ENDPOINT = '1894469520484605.cn-hangzhou.pai-eas.aliyuncs.com'
  89. TOKEN = 'ODI1MmUxODgzZDc3ODM0ZmQwZWU0YTVjZjdlOWVlMGFlZGJjNTlkYQ=='
  90. SERV_NAME = 'ad_rank_dnn_v11_easyrec'
  91. TOKEN = 'ZmUxOWY5OGYwYmFkZmU0ZGEyM2E4NTFkZjAwNGU0YWNmZTFhYTRhZg=='
  92. SERV_NAME = 'ad_rank_dnn_v11_easyrec_test'
  93. DTYPE_TO_TF_TYPE = {
  94. 'float64': TFRequest.DT_DOUBLE,
  95. 'object': TFRequest.DT_STRING,
  96. 'int64': TFRequest.DT_INT64
  97. }
  98. def permutate_feature(df, column):
  99. df = df.copy()
  100. np.random.shuffle(df[column].values)
  101. return df
  102. def clear_feature(df, column):
  103. df = df.copy()
  104. dense_features = open("features_top300.config").readlines()
  105. dense_features = [name.strip().lower() for name in dense_features]
  106. def detect_na_return(col):
  107. if df[col].dtype == 'int64':
  108. return 0
  109. elif df[col].dtype == 'float64':
  110. return 0.0
  111. elif col in dense_features:
  112. return 0.0
  113. elif col in ('has_conversion', 'has_click'):
  114. return 0
  115. else:
  116. return ''
  117. zero_value = detect_na_return(column)
  118. df[column] = zero_value
  119. return df
  120. def build_req(df):
  121. feature_names = df.columns.tolist()
  122. batch_size = len(df)
  123. req = TFRequest('serving_default')
  124. for name in feature_names:
  125. dtype = str(df[name].dtype)
  126. tf_type = DTYPE_TO_TF_TYPE[dtype]
  127. values = df[name].tolist()
  128. if dtype == 'object':
  129. values = [bytes(x, 'utf-8') for x in values]
  130. req.add_feed(name, [batch_size], tf_type, values)
  131. req.add_fetch('probs')
  132. return req
  133. def predict_by_batches(df, batch_size = 512):
  134. n_samples = len(df)
  135. batch_num = (n_samples + batch_size - 1) // batch_size
  136. scores = []
  137. for i in range(batch_num):
  138. sub_df = df[i * batch_size : min(n_samples, (i + 1) * batch_size)]
  139. req = build_req(sub_df)
  140. resp = client.predict(req)
  141. scores.extend([x for x in resp.response.outputs['probs'].float_val])
  142. return scores
  143. def permutate_feature_and_predict(df):
  144. base_scores = client.predict(build_req(df)).response.outputs['probs'].float_val
  145. base_scores = np.array(base_scores)
  146. base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
  147. label = df['has_conversion']
  148. base_auc = roc_auc_score(y_true=label, y_score=base_scores)
  149. ctcvr = np.sum(label) / len(label)
  150. print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
  151. feature_to_test = df.columns
  152. feature_to_test = ['profession',]
  153. for column in feature_to_test:
  154. new_df = clear_feature(df, column)
  155. scores = predict_by_batches(new_df)
  156. scores = [x / (x + (1 - x) / 0.04) for x in scores]
  157. scores = np.array(scores)
  158. avg_score = np.average(scores)
  159. avg_abs_diff = np.average(np.abs(scores - base_scores))
  160. avg_diff = np.average(scores - base_scores)
  161. new_auc = roc_auc_score(y_true=label, y_score=scores)
  162. auc_diff = new_auc - base_auc
  163. print(f'{column}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
  164. def clear_feature_by_prefix_and_predict(df):
  165. feature_prefix_list = ["actionstatic","adid","adverid","apptype","b2","b3","b4","b5","b6","b7","b8","brand","cate1","cate2","cid","city","clickall","converall","cpa","creative","ctcvr","ctr","cvr","d1","e1","e2","ecpm","has","hour","incomeall","is","profession","region","root","timediff","title","user","vid","viewall"
  166. ]
  167. base_scores = client.predict(build_req(df)).response.outputs['probs'].float_val
  168. base_scores = np.array(base_scores)
  169. base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
  170. label = df['has_conversion']
  171. try:
  172. base_auc = roc_auc_score(y_true=label, y_score=base_scores)
  173. except:
  174. base_auc = 0
  175. ctcvr = np.sum(label) / len(label)
  176. print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
  177. for prefix in feature_prefix_list:
  178. new_df = df
  179. columns_to_clear = [col for col in df.columns if col.startswith(prefix)]
  180. for column in columns_to_clear:
  181. new_df = clear_feature(new_df, column)
  182. scores = predict_by_batches(new_df)
  183. scores = [x / (x + (1 - x) / 0.04) for x in scores]
  184. scores = np.array(scores)
  185. avg_score = np.average(scores)
  186. avg_abs_diff = np.average(np.abs(scores - base_scores))
  187. avg_diff = np.average(scores - base_scores)
  188. try:
  189. new_auc = roc_auc_score(y_true=label, y_score=scores)
  190. except:
  191. new_auc = 0
  192. auc_diff = new_auc - base_auc
  193. print(f'{prefix}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
  194. def clear_feature_and_predict(df):
  195. base_scores = predict_by_batches(df)
  196. base_scores = np.array(base_scores)
  197. # base_scores = base_scores / (base_scores + (1 - base_scores) / 0.04)
  198. # print(base_scores)
  199. label = df['has_conversion']
  200. ctcvr = np.sum(label) / len(label)
  201. try:
  202. base_auc = roc_auc_score(y_true=label, y_score=base_scores)
  203. except:
  204. base_auc = 0
  205. print(f'avg base score: {np.average(base_scores):.6f}, auc: {base_auc:.6f}, ctcvr: {ctcvr:.6f}')
  206. feature_to_test = [x.lower().strip() for x in open('features_top50.config').readlines()]
  207. return
  208. # feature_to_test = sparse_features
  209. all_clean_df = df.copy()
  210. for column in feature_to_test:
  211. all_clean_df = clear_feature(all_clean_df, column)
  212. # score = client.predict(build_req(all_clean_df)).response.outputs['probs'].float_val
  213. score = predict_by_batches(all_clean_df)
  214. score = np.array(score)
  215. score = score / (score + (1 - score) / 0.04)
  216. for column in feature_to_test:
  217. new_df = clear_feature(df, column)
  218. scores = predict_by_batches(new_df)
  219. scores = [x / (x + (1 - x) / 0.04) for x in scores]
  220. scores = np.array(scores)
  221. avg_score = np.average(scores)
  222. avg_abs_diff = np.average(np.abs(scores - base_scores))
  223. avg_diff = np.average(scores - base_scores)
  224. try:
  225. new_auc = roc_auc_score(y_true=label, y_score=scores)
  226. except:
  227. new_auc = 0
  228. auc_diff = new_auc - base_auc
  229. print(f'{column:20}\t{avg_score:.6f}\t{avg_diff:.6f}\t{avg_abs_diff:.6f}\t{auc_diff:.6f}')
  230. # df_to_draw = pd.DataFrame({
  231. # 'score': scores,
  232. # 'label': label
  233. # })
  234. # draw_figures(df_to_draw, column, 0.04,
  235. # filename=f'plots/feature_q_plot_{column}.png')
  236. if __name__ == '__main__':
  237. client = PredictClient(ENDPOINT, SERV_NAME)
  238. client.set_token(TOKEN)
  239. client.init()
  240. df = get_data()
  241. # df = df.query('user_vid_return_tags_3d.str.len() > 1')
  242. # df['user_vid_return_tags_3d'] = ''
  243. # pd.set_option('display.max_rows', None)
  244. df['vid'] = df['vid'].apply(lambda x: int(x))
  245. df['cid'] = df['cid'].apply(lambda x: int(x))
  246. df['adid'] = df['adid'].apply(lambda x: int(x))
  247. df['adverid'] = df['adverid'].apply(lambda x: int(x))
  248. for feature in int_features:
  249. df[feature] = df[feature].apply(lambda x: int(x))
  250. if len(df) == 0:
  251. print("empty df")
  252. sys.exit(0)
  253. print(f'df size: {len(df)}')
  254. # print(df)
  255. # print(df[['vid', 'cid', 'adid', 'adverid', 'apptype', 'hour', 'hour_quarter', 'is_first_layer']])
  256. # clear_feature_and_predict(df)
  257. # permutate_feature_and_predict(df)
  258. clear_feature_by_prefix_and_predict(df)