widedeep_v12_1.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. raw_input = open("data_fields_v3.config").readlines()
  9. input_fields = dict(
  10. map(lambda x: (x[0], x[1]),
  11. map(lambda x: x.strip().split(' '), raw_input)))
  12. dense_features = open("features_top300.config").readlines()
  13. dense_features = [name.strip().lower() for name in dense_features]
  14. top_dense_features = open('features_top100.config').readlines()
  15. top_dense_features = [name.strip().lower() for name in top_dense_features]
  16. sparse_features = [
  17. "cid", "adid", "adverid",
  18. "region", "city", "brand",
  19. "vid", "cate1", "cate2",
  20. "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split",
  21. "profession"
  22. ]
  23. tag_features = [
  24. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  25. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  26. ]
  27. seq_features = [
  28. "user_cid_click_list", "user_cid_conver_list"
  29. ]
  30. input_type_map = {
  31. 'BIGINT': 'INT64',
  32. 'DOUBLE': 'DOUBLE',
  33. 'STRING': 'STRING'
  34. }
  35. print("""train_config {
  36. optimizer_config {
  37. adam_optimizer {
  38. learning_rate {
  39. constant_learning_rate {
  40. learning_rate: 0.0010
  41. }
  42. }
  43. }
  44. use_moving_average: false
  45. }
  46. optimizer_config {
  47. adam_optimizer {
  48. learning_rate {
  49. constant_learning_rate {
  50. learning_rate: 0.0006
  51. }
  52. }
  53. }
  54. use_moving_average: false
  55. }
  56. optimizer_config {
  57. adam_optimizer {
  58. learning_rate {
  59. constant_learning_rate {
  60. learning_rate: 0.002
  61. }
  62. }
  63. }
  64. use_moving_average: false
  65. }
  66. num_steps: 200000
  67. sync_replicas: true
  68. save_checkpoints_steps: 1100
  69. log_step_count_steps: 100
  70. save_summary_steps: 100
  71. }
  72. eval_config {
  73. metrics_set {
  74. auc {
  75. }
  76. }
  77. eval_online: true
  78. eval_interval_secs: 120
  79. }
  80. data_config {
  81. batch_size: 512
  82. num_epochs: 1
  83. """)
  84. for name in input_fields:
  85. input_type = input_type_map[input_fields[name]]
  86. default_spec = ''
  87. if name in dense_features:
  88. default_spec = '\n default_val: "0"'
  89. print(f""" input_fields {{
  90. input_name: "{name}"
  91. input_type: {input_type}{default_spec}
  92. }}""")
  93. # default_val: "0"
  94. print(""" label_fields: "has_conversion"
  95. prefetch_size: 32
  96. input_type: OdpsInputV2
  97. }
  98. """)
  99. for name in dense_features:
  100. print(f"""feature_configs {{
  101. input_names: "{name}"
  102. feature_type: RawFeature
  103. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  104. embedding_dim: 6
  105. }}""")
  106. for name in sparse_features:
  107. print(f"""feature_configs {{
  108. input_names: "{name}"
  109. feature_type: IdFeature
  110. hash_bucket_size: 1000000
  111. embedding_dim: 6
  112. }}""")
  113. for name in tag_features + seq_features:
  114. print(f"""feature_configs {{
  115. input_names: "{name}"
  116. feature_type: TagFeature
  117. hash_bucket_size: 1000000
  118. embedding_dim: 6
  119. separator: ','
  120. }}""")
  121. def wide_and_deep():
  122. print("""
  123. model_config {
  124. model_class: "WideAndDeep"
  125. feature_groups: {
  126. group_name: 'wide'""")
  127. for name in dense_features + sparse_features:
  128. print(f""" feature_names: '{name}'""")
  129. print(""" wide_deep: WIDE
  130. }
  131. feature_groups: {
  132. group_name: 'deep'""")
  133. for name in dense_features + sparse_features + tag_features + seq_features:
  134. print(f""" feature_names: '{name}'""")
  135. print(""" wide_deep: DEEP
  136. }
  137. wide_and_deep {
  138. wide_output_dim: 8
  139. dnn {
  140. hidden_units: [256, 128, 64]
  141. }
  142. final_dnn {
  143. hidden_units: [64, 32]
  144. }
  145. l2_regularization: 1e-5
  146. }
  147. embedding_regularization: 1e-6
  148. }""")
  149. def deep_fm():
  150. print("""
  151. model_config {
  152. model_class: "DeepFM"
  153. feature_groups: {
  154. group_name: 'wide'""")
  155. for name in dense_features + sparse_features:
  156. print(f""" feature_names: '{name}'""")
  157. print(""" wide_deep: WIDE
  158. }
  159. feature_groups: {
  160. group_name: 'deep'""")
  161. for name in top_dense_features + sparse_features + tag_features + seq_features:
  162. print(f""" feature_names: '{name}'""")
  163. print(""" wide_deep: DEEP
  164. }
  165. deepfm {
  166. wide_output_dim: 8
  167. dnn {
  168. hidden_units: [256, 128, 64]
  169. }
  170. final_dnn {
  171. hidden_units: [64, 32]
  172. }
  173. l2_regularization: 1e-5
  174. }
  175. embedding_regularization: 1e-6
  176. }""")
  177. def fm():
  178. print("""
  179. model_config {
  180. model_class: "FM"
  181. feature_groups: {
  182. group_name: 'wide'""")
  183. for name in dense_features:
  184. print(f""" feature_names: '{name}'""")
  185. print(""" wide_deep: WIDE
  186. }
  187. feature_groups: {
  188. group_name: 'deep'""")
  189. for name in dense_features:
  190. print(f""" feature_names: '{name}'""")
  191. print(""" wide_deep: DEEP
  192. }
  193. fm {
  194. }
  195. embedding_regularization: 1e-5
  196. }""")
  197. def config_export():
  198. print("""
  199. export_config {
  200. exporter_type: "final"
  201. }
  202. """)
  203. deep_fm()
  204. config_export()