widedeep_v12_6.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. """
  9. 删除容易导致偏差的viewall特征
  10. """
  11. raw_input = open("data_fields_v3.config").readlines()
  12. input_fields = dict(
  13. map(lambda x: (x[0], x[1]),
  14. map(lambda x: x.strip().split(' '), raw_input)))
  15. def read_features(filename, excludes=None):
  16. features = open(filename).readlines()
  17. features = [name.strip().lower() for name in features]
  18. if excludes:
  19. for x in excludes:
  20. if x in features:
  21. features.remove(x)
  22. return features
  23. exclude_features = ['viewall',]
  24. dense_features = read_features("features_top300.config", exclude_features)
  25. top_dense_features = read_features('features_top100.config', exclude_features)
  26. sparse_features = [
  27. "cid", "adid", "adverid",
  28. "region", "city", "brand",
  29. "vid", "cate1", "cate2",
  30. "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split",
  31. ]
  32. tag_features = [
  33. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  34. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  35. ]
  36. seq_features = [
  37. "user_cid_click_list", "user_cid_conver_list"
  38. ]
  39. input_type_map = {
  40. 'BIGINT': 'INT64',
  41. 'DOUBLE': 'DOUBLE',
  42. 'STRING': 'STRING'
  43. }
  44. print("""train_config {
  45. optimizer_config {
  46. adam_optimizer {
  47. learning_rate {
  48. constant_learning_rate {
  49. learning_rate: 0.0010
  50. }
  51. }
  52. }
  53. use_moving_average: false
  54. }
  55. optimizer_config {
  56. adam_optimizer {
  57. learning_rate {
  58. constant_learning_rate {
  59. learning_rate: 0.0006
  60. }
  61. }
  62. }
  63. use_moving_average: false
  64. }
  65. optimizer_config {
  66. adam_optimizer {
  67. learning_rate {
  68. constant_learning_rate {
  69. learning_rate: 0.002
  70. }
  71. }
  72. }
  73. use_moving_average: false
  74. }
  75. num_steps: 200000
  76. sync_replicas: true
  77. save_checkpoints_steps: 1100
  78. log_step_count_steps: 100
  79. save_summary_steps: 100
  80. }
  81. eval_config {
  82. metrics_set {
  83. auc {
  84. }
  85. }
  86. eval_online: true
  87. eval_interval_secs: 120
  88. }
  89. data_config {
  90. batch_size: 512
  91. num_epochs: 1
  92. """)
  93. for name in input_fields:
  94. input_type = input_type_map[input_fields[name]]
  95. default_spec = ''
  96. if name in dense_features:
  97. default_spec = '\n default_val: "0"'
  98. print(f""" input_fields {{
  99. input_name: "{name}"
  100. input_type: {input_type}{default_spec}
  101. }}""")
  102. # default_val: "0"
  103. print(""" label_fields: "has_conversion"
  104. prefetch_size: 32
  105. input_type: OdpsInputV2
  106. }
  107. """)
  108. for name in dense_features:
  109. print(f"""feature_configs {{
  110. input_names: "{name}"
  111. feature_type: RawFeature
  112. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  113. embedding_dim: 6
  114. }}""")
  115. for name in sparse_features:
  116. print(f"""feature_configs {{
  117. input_names: "{name}"
  118. feature_type: IdFeature
  119. hash_bucket_size: 1000000
  120. embedding_dim: 6
  121. }}""")
  122. for name in tag_features + seq_features:
  123. print(f"""feature_configs {{
  124. input_names: "{name}"
  125. feature_type: TagFeature
  126. hash_bucket_size: 1000000
  127. embedding_dim: 6
  128. separator: ','
  129. }}""")
  130. def wide_and_deep():
  131. print("""
  132. model_config {
  133. model_class: "WideAndDeep"
  134. feature_groups: {
  135. group_name: 'wide'""")
  136. for name in dense_features + sparse_features:
  137. print(f""" feature_names: '{name}'""")
  138. print(""" wide_deep: WIDE
  139. }
  140. feature_groups: {
  141. group_name: 'deep'""")
  142. for name in dense_features + sparse_features + tag_features + seq_features:
  143. print(f""" feature_names: '{name}'""")
  144. print(""" wide_deep: DEEP
  145. }
  146. wide_and_deep {
  147. wide_output_dim: 8
  148. dnn {
  149. hidden_units: [256, 128, 64]
  150. }
  151. final_dnn {
  152. hidden_units: [64, 32]
  153. }
  154. l2_regularization: 1e-5
  155. }
  156. embedding_regularization: 1e-6
  157. }""")
  158. def deep_fm():
  159. print("""
  160. model_config {
  161. model_class: "DeepFM"
  162. feature_groups: {
  163. group_name: 'wide'""")
  164. for name in dense_features + sparse_features:
  165. print(f""" feature_names: '{name}'""")
  166. print(""" wide_deep: WIDE
  167. }
  168. feature_groups: {
  169. group_name: 'deep'""")
  170. for name in top_dense_features + sparse_features + tag_features + seq_features:
  171. print(f""" feature_names: '{name}'""")
  172. print(""" wide_deep: DEEP
  173. }
  174. deepfm {
  175. wide_output_dim: 8
  176. dnn {
  177. hidden_units: [256, 128, 64]
  178. }
  179. final_dnn {
  180. hidden_units: [64, 32]
  181. }
  182. l2_regularization: 1e-5
  183. }
  184. embedding_regularization: 1e-6
  185. }""")
  186. def fm():
  187. print("""
  188. model_config {
  189. model_class: "FM"
  190. feature_groups: {
  191. group_name: 'wide'""")
  192. for name in dense_features:
  193. print(f""" feature_names: '{name}'""")
  194. print(""" wide_deep: WIDE
  195. }
  196. feature_groups: {
  197. group_name: 'deep'""")
  198. for name in dense_features:
  199. print(f""" feature_names: '{name}'""")
  200. print(""" wide_deep: DEEP
  201. }
  202. fm {
  203. }
  204. embedding_regularization: 1e-5
  205. }""")
  206. def config_export():
  207. print("""
  208. export_config {
  209. exporter_type: "final"
  210. }
  211. """)
  212. deep_fm()
  213. config_export()