widedeep_v12_4.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2025 StrayWarrior <i@straywarrior.com>
  6. #
  7. # Distributed under terms of the MIT license.
  8. """
  9. 删除容易导致偏差的viewall特征
  10. """
  11. raw_input = open("data_fields_v3.config").readlines()
  12. input_fields = dict(
  13. map(lambda x: (x[0], x[1]),
  14. map(lambda x: x.strip().split(' '), raw_input)))
  15. def read_features(filename, excludes=None):
  16. features = open(filename).readlines()
  17. features = [name.strip().lower() for name in features]
  18. if excludes:
  19. for x in excludes:
  20. if x in features:
  21. features.remove(x)
  22. return features
  23. exclude_features = ['viewall',]
  24. dense_features = read_features("features_top300.config", exclude_features)
  25. top_dense_features = read_features('features_top100.config', exclude_features)
  26. sparse_features = [
  27. "cid", "adid", "adverid",
  28. "region", "city", "brand",
  29. "vid", "cate1", "cate2",
  30. "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split",
  31. "profession"
  32. ]
  33. tag_features = [
  34. "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
  35. "user_vid_return_tags_7d", "user_vid_return_tags_14d"
  36. ]
  37. seq_features = [
  38. "user_cid_click_list", "user_cid_conver_list"
  39. ]
  40. input_type_map = {
  41. 'BIGINT': 'INT64',
  42. 'DOUBLE': 'DOUBLE',
  43. 'STRING': 'STRING'
  44. }
  45. print("""train_config {
  46. optimizer_config {
  47. adam_optimizer {
  48. learning_rate {
  49. constant_learning_rate {
  50. learning_rate: 0.0010
  51. }
  52. }
  53. }
  54. use_moving_average: false
  55. }
  56. optimizer_config {
  57. adam_optimizer {
  58. learning_rate {
  59. constant_learning_rate {
  60. learning_rate: 0.0006
  61. }
  62. }
  63. }
  64. use_moving_average: false
  65. }
  66. optimizer_config {
  67. adam_optimizer {
  68. learning_rate {
  69. constant_learning_rate {
  70. learning_rate: 0.002
  71. }
  72. }
  73. }
  74. use_moving_average: false
  75. }
  76. num_steps: 200000
  77. sync_replicas: true
  78. save_checkpoints_steps: 1100
  79. log_step_count_steps: 100
  80. save_summary_steps: 100
  81. }
  82. eval_config {
  83. metrics_set {
  84. auc {
  85. }
  86. }
  87. eval_online: true
  88. eval_interval_secs: 120
  89. }
  90. data_config {
  91. batch_size: 512
  92. num_epochs: 1
  93. """)
  94. for name in input_fields:
  95. input_type = input_type_map[input_fields[name]]
  96. default_spec = ''
  97. if name in dense_features:
  98. default_spec = '\n default_val: "0"'
  99. print(f""" input_fields {{
  100. input_name: "{name}"
  101. input_type: {input_type}{default_spec}
  102. }}""")
  103. # default_val: "0"
  104. print(""" label_fields: "has_conversion"
  105. prefetch_size: 32
  106. input_type: OdpsInputV2
  107. }
  108. """)
  109. for name in dense_features:
  110. print(f"""feature_configs {{
  111. input_names: "{name}"
  112. feature_type: RawFeature
  113. boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  114. embedding_dim: 6
  115. }}""")
  116. for name in sparse_features:
  117. print(f"""feature_configs {{
  118. input_names: "{name}"
  119. feature_type: IdFeature
  120. hash_bucket_size: 1000000
  121. embedding_dim: 6
  122. }}""")
  123. for name in tag_features + seq_features:
  124. print(f"""feature_configs {{
  125. input_names: "{name}"
  126. feature_type: TagFeature
  127. hash_bucket_size: 1000000
  128. embedding_dim: 6
  129. separator: ','
  130. }}""")
  131. def wide_and_deep():
  132. print("""
  133. model_config {
  134. model_class: "WideAndDeep"
  135. feature_groups: {
  136. group_name: 'wide'""")
  137. for name in dense_features + sparse_features:
  138. print(f""" feature_names: '{name}'""")
  139. print(""" wide_deep: WIDE
  140. }
  141. feature_groups: {
  142. group_name: 'deep'""")
  143. for name in dense_features + sparse_features + tag_features + seq_features:
  144. print(f""" feature_names: '{name}'""")
  145. print(""" wide_deep: DEEP
  146. }
  147. wide_and_deep {
  148. wide_output_dim: 8
  149. dnn {
  150. hidden_units: [256, 128, 64]
  151. }
  152. final_dnn {
  153. hidden_units: [64, 32]
  154. }
  155. l2_regularization: 1e-5
  156. }
  157. embedding_regularization: 1e-6
  158. }""")
  159. def deep_fm():
  160. print("""
  161. model_config {
  162. model_class: "DeepFM"
  163. feature_groups: {
  164. group_name: 'wide'""")
  165. for name in dense_features + sparse_features:
  166. print(f""" feature_names: '{name}'""")
  167. print(""" wide_deep: WIDE
  168. }
  169. feature_groups: {
  170. group_name: 'deep'""")
  171. for name in top_dense_features + sparse_features + tag_features + seq_features:
  172. print(f""" feature_names: '{name}'""")
  173. print(""" wide_deep: DEEP
  174. }
  175. deepfm {
  176. wide_output_dim: 8
  177. dnn {
  178. hidden_units: [256, 128, 64]
  179. }
  180. final_dnn {
  181. hidden_units: [64, 32]
  182. }
  183. l2_regularization: 1e-5
  184. }
  185. embedding_regularization: 1e-6
  186. }""")
  187. def fm():
  188. print("""
  189. model_config {
  190. model_class: "FM"
  191. feature_groups: {
  192. group_name: 'wide'""")
  193. for name in dense_features:
  194. print(f""" feature_names: '{name}'""")
  195. print(""" wide_deep: WIDE
  196. }
  197. feature_groups: {
  198. group_name: 'deep'""")
  199. for name in dense_features:
  200. print(f""" feature_names: '{name}'""")
  201. print(""" wide_deep: DEEP
  202. }
  203. fm {
  204. }
  205. embedding_regularization: 1e-5
  206. }""")
  207. def config_export():
  208. print("""
  209. export_config {
  210. exporter_type: "final"
  211. }
  212. """)
  213. deep_fm()
  214. config_export()