#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2025 StrayWarrior <i@straywarrior.com>
#
# Distributed under terms of the MIT license.

"""
删除容易导致偏差的viewall特征
"""


raw_input = open("data_fields_v3.config").readlines()
input_fields = dict(
    map(lambda x: (x[0], x[1]),
        map(lambda x: x.strip().split(' '), raw_input)))

def read_features(filename, excludes=None):
    features = open(filename).readlines()
    features = [name.strip().lower() for name in features]
    if excludes:
        for x in excludes:
            if x in features:
                features.remove(x)
    return features

exclude_features = ['viewall', "e1_tags_14d_maxscore","e2_tags_14d_avgscore","e2_tags_14d_maxscore","e1_tags_14d_avgscore","e2_tags_7d_maxscore","e2_tags_7d_avgscore","e2_tags_3d_avgscore","e1_tags_3d_maxscore","e1_tags_7d_maxscore","e2_tags_3d_maxscore","e1_tags_3d_avgscore","e1_tags_7d_avgscore"
]

dense_features = read_features("features_top300.config", exclude_features)
top_dense_features = read_features('features_top100.config', exclude_features)

sparse_features = [
    "cid", "adid", "adverid",
    "region", "city", "brand",
    "vid", "cate1", "cate2",
    "apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split",
    "profession"
]
tag_features = [
    "user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
    "user_vid_return_tags_7d", "user_vid_return_tags_14d"
]
seq_features = [
    "user_cid_click_list", "user_cid_conver_list"
]

input_type_map = {
    'BIGINT': 'INT64',
    'DOUBLE': 'DOUBLE',
    'STRING': 'STRING'
}

print("""train_config {
  optimizer_config {
    adam_optimizer {
      learning_rate {
        constant_learning_rate {
          learning_rate: 0.0010
        }
      }
    }
    use_moving_average: false
  }
  optimizer_config {
    adam_optimizer {
      learning_rate {
        constant_learning_rate {
          learning_rate: 0.0006
        }
      }
    }
    use_moving_average: false
  }
  optimizer_config {
    adam_optimizer {
      learning_rate {
        constant_learning_rate {
          learning_rate: 0.002
        }
      }
    }
    use_moving_average: false
  }
  num_steps: 200000
  sync_replicas: true
  save_checkpoints_steps: 1100
  log_step_count_steps: 100
  save_summary_steps: 100
}
eval_config {
  metrics_set {
    auc {
    }
  }
  eval_online: true
  eval_interval_secs: 120
}
data_config {
  batch_size: 512
  num_epochs: 1
""")

for name in input_fields:
    input_type = input_type_map[input_fields[name]]
    default_spec = ''
    if name in dense_features:
        default_spec = '\n    default_val: "0"'
    print(f"""  input_fields {{
    input_name: "{name}"
    input_type: {input_type}{default_spec}
  }}""")
    # default_val: "0"

print("""  label_fields: "has_conversion"
  prefetch_size: 32
  input_type: OdpsInputV2
}
""")

for name in dense_features:
    print(f"""feature_configs {{
  input_names: "{name}"
  feature_type: RawFeature
  boundaries: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
  embedding_dim: 6
}}""")

for name in sparse_features:
    print(f"""feature_configs {{
  input_names: "{name}"
  feature_type: IdFeature
  hash_bucket_size: 1000000
  embedding_dim: 6
}}""")

for name in tag_features + seq_features:
    print(f"""feature_configs {{
  input_names: "{name}"
  feature_type: TagFeature
  hash_bucket_size: 1000000
  embedding_dim: 6
  separator: ','
}}""")


def wide_and_deep():
    print("""
model_config {
  model_class: "WideAndDeep"
   feature_groups: {
    group_name: 'wide'""")

    for name in dense_features + sparse_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: WIDE
  }
  feature_groups: {
    group_name: 'deep'""")

    for name in dense_features + sparse_features + tag_features + seq_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: DEEP
  }
  wide_and_deep {
    wide_output_dim: 8

    dnn {
      hidden_units: [256, 128, 64]
    }
    final_dnn {
      hidden_units: [64, 32]
    }
    l2_regularization: 1e-5
  }
  embedding_regularization: 1e-6
}""")


def deep_fm():
    print("""
model_config {
  model_class: "DeepFM"
   feature_groups: {
    group_name: 'wide'""")

    for name in dense_features + sparse_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: WIDE
  }
  feature_groups: {
    group_name: 'deep'""")

    for name in top_dense_features + sparse_features + tag_features + seq_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: DEEP
  }
  deepfm {
    wide_output_dim: 8

    dnn {
      hidden_units: [256, 128, 64]
    }

    final_dnn {
      hidden_units: [64, 32]
    }
    l2_regularization: 1e-5
  }
  embedding_regularization: 1e-6
}""")


def fm():
    print("""
model_config {
  model_class: "FM"
   feature_groups: {
    group_name: 'wide'""")

    for name in dense_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: WIDE
  }
  feature_groups: {
    group_name: 'deep'""")

    for name in dense_features:
        print(f"""    feature_names: '{name}'""")

    print("""    wide_deep: DEEP
  }
  fm {
  }
  embedding_regularization: 1e-5
}""")


def config_export():
    print("""
export_config {
  exporter_type: "final"
}
""")


deep_fm()
config_export()