|
@@ -21,15 +21,20 @@ sparse_features = [
|
|
|
"region", "city", "brand",
|
|
|
"vid", "cate1", "cate2",
|
|
|
"apptype", "hour", "hour_quarter", "root_source_scene", "root_source_channel", "is_first_layer", "title_split",
|
|
|
- "profession"
|
|
|
+ "profession", "creative_type"
|
|
|
]
|
|
|
tag_features = [
|
|
|
"user_vid_return_tags_2h", "user_vid_return_tags_1d", "user_vid_return_tags_3d",
|
|
|
- "user_vid_return_tags_7d", "user_vid_return_tags_14d", "user_vid_share_tags_1d", "user_vid_share_tags_14d"
|
|
|
+ "user_vid_return_tags_7d", "user_vid_return_tags_14d", "user_vid_share_tags_1d", "user_vid_share_tags_14d",
|
|
|
+ "user_vid_share_tags_1d", "user_vid_share_tags_14d", "user_vid_return_cate1_14d", "user_vid_return_cate2_14d",
|
|
|
+ "user_vid_share_cate1_14d", "user_vid_share_cate2_14d"
|
|
|
]
|
|
|
seq_features = [
|
|
|
"user_cid_click_list", "user_cid_conver_list"
|
|
|
]
|
|
|
+nlp_features = [
|
|
|
+ "creative_hook_embedding", "creative_why_embedding", "creative_action_embedding"
|
|
|
+]
|
|
|
|
|
|
input_type_map = {
|
|
|
'BIGINT': 'INT64',
|
|
@@ -129,6 +134,15 @@ for name in tag_features + seq_features:
|
|
|
separator: ','
|
|
|
}}""")
|
|
|
|
|
|
+for name in nlp_features:
|
|
|
+ print(f"""feature_configs {{
|
|
|
+ input_names: "{name}"
|
|
|
+ feature_type: TagFeature
|
|
|
+ hash_bucket_size: 1000000
|
|
|
+ embedding_dim: 6
|
|
|
+ separator: '|'
|
|
|
+}}""")
|
|
|
+
|
|
|
|
|
|
def wide_and_deep():
|
|
|
print("""
|
|
@@ -145,7 +159,7 @@ model_config {
|
|
|
feature_groups: {
|
|
|
group_name: 'deep'""")
|
|
|
|
|
|
- for name in dense_features + sparse_features + tag_features + seq_features:
|
|
|
+ for name in dense_features + sparse_features + tag_features + seq_features + nlp_features:
|
|
|
print(f""" feature_names: '{name}'""")
|
|
|
|
|
|
print(""" wide_deep: DEEP
|
|
@@ -180,7 +194,7 @@ model_config {
|
|
|
feature_groups: {
|
|
|
group_name: 'deep'""")
|
|
|
|
|
|
- for name in top_dense_features + sparse_features + tag_features + seq_features:
|
|
|
+ for name in top_dense_features + sparse_features + tag_features + seq_features + nlp_features:
|
|
|
print(f""" feature_names: '{name}'""")
|
|
|
|
|
|
print(""" wide_deep: DEEP
|