Procházet zdrojové kódy

删除无用实验代码

gufengshou1 před 1 rokem
rodič
revize
2bad6162dc

+ 3 - 60
ad-engine-service/src/main/java/com/tzld/piaoquan/ad/engine/service/predict/container/ThresholdModelContainer.java

@@ -1,8 +1,6 @@
 package com.tzld.piaoquan.ad.engine.service.predict.container;
 
 import com.tdunning.math.stats.Centroid;
-import com.tdunning.math.stats.MergingDigest;
-import com.tzld.piaoquan.ad.engine.service.predict.model.threshold.ScoreV2ThresholdPredictModel;
 import com.tzld.piaoquan.ad.engine.service.predict.model.threshold.ThresholdPredictModel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
@@ -17,12 +15,11 @@ import java.util.HashMap;
 import java.util.Map;
 import java.util.concurrent.Executors;
 import java.util.concurrent.ScheduledExecutorService;
-import java.util.concurrent.TimeUnit;
 
 @Component
 public class ThresholdModelContainer {
 
-    private final static Logger log = LoggerFactory.getLogger(ScoreV2ThresholdPredictModel.class);
+    private final static Logger log = LoggerFactory.getLogger(ThresholdModelContainer.class);
 
     @Autowired
     private ApplicationContext applicationContext;
@@ -30,7 +27,7 @@ public class ThresholdModelContainer {
     private double position;
 
     public static Map<String,ThresholdPredictModel> modelMap=new HashMap<>();
-//    public static Map<Integer,MergingDigest> mergingDigestMap=new HashMap<>();
+
 
     private static final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
     @PostConstruct
@@ -39,22 +36,7 @@ public class ThresholdModelContainer {
         beanMap.forEach((s,model)->{
             modelMap.put(model.getName(), model);
         });
-        //只关注重点app
-//        mergingDigestMap.put(0, new MergingDigest(10000));
-//        mergingDigestMap.put(3, new MergingDigest(10000));
-//        mergingDigestMap.put(4, new MergingDigest(10000));
-//        mergingDigestMap.put(5, new MergingDigest(10000));
-//        mergingDigestMap.put(21, new MergingDigest(10000));
-//        final Runnable task = new Runnable() {
-//            public void run() {
-//                try {
-//                    printDigestThreshold();
-//                }catch (Exception e){
-//                    e.printStackTrace();
-//                }
-//            }
-//        };
-//        scheduler.scheduleAtFixedRate(task, 0, 1, TimeUnit.MINUTES); // 10分钟
+
     }
 
     public static ThresholdPredictModel getThresholdPredictModel(String modelName){
@@ -65,44 +47,5 @@ public class ThresholdModelContainer {
         return modelMap.get("basic");
     }
 
-//    public static void mergingDigestAddScore(Integer appType,Double score){
-//        mergingDigestMap.getOrDefault(appType,new MergingDigest(1)).add(score);
-//    }
-
-//    public static double getThresholdByTDigest(Integer appType,Double sortPosition){
-//        return  mergingDigestMap.getOrDefault(appType,new MergingDigest(1)).quantile(sortPosition);
-//    }
-
-//    public void printDigestThreshold(){
-//        try {
-//            for(Map.Entry<Integer,MergingDigest> entry:mergingDigestMap.entrySet()){
-//                log.info("svc=printDigestThreshold modelName=modelV2 appType={} mergingDigestThreshold={}"
-//                        , entry.getKey(),entry.getValue().quantile(position));
-//            }
-//
-//        }catch (Exception e){
-//            e.printStackTrace();
-//        }
-//    }
-
 
-//    public static void main(String[] args){
-//        MergingDigest mergingDigest = new MergingDigest(100);
-//        for(long i=0;i<1000;i++){
-//            double newDataPoint = Math.random() * 100;
-//            // 向MergingDigest中添加新数据
-//            mergingDigest.add(newDataPoint);
-//        }
-//        System.out.println(mergingDigest.quantile(0.12));
-//        System.out.println(mergingDigest.quantile(0.6));
-//        Iterable<Centroid> centroids = mergingDigest.centroids();
-//        Integer totalW=0;
-//        Integer totalS=0;
-//        // 遍历质点列表并输出
-//        for (Centroid centroid : centroids) {
-//            System.out.println("值: " + centroid.mean() + ", 权重: " + centroid.count());
-//        }
-//        System.out.println(totalW);
-//        System.out.println(totalS);
-//    }
 }