yaodaoseng 2 giorni fa
parent
commit
0a61bb17f6

+ 1 - 0
ad-engine-commons/src/main/java/com/tzld/piaoquan/ad/engine/commons/enums/RedisPrefixEnum.java

@@ -4,6 +4,7 @@ public enum RedisPrefixEnum {
 
     ADVANCE_SHOW_AD_FLAG("ad:advance:show:ad:flag:%s", "是否提前出广告标识,0-否;1-是"),
     ADVER_IS_API_EQ_0_IDS("ad:adver:isapi:0", "未回传广告主ID集合"),
+    AD_USER_ROR_BEHAVIOR("ad:user:ror:behavior:%s", "用户ror行为特征")
     ;
     private String prefix;
     private String desc;

+ 12 - 0
ad-engine-service/src/main/java/com/tzld/piaoquan/ad/engine/service/feature/FeatureService.java

@@ -102,6 +102,18 @@ public class FeatureService {
         return this.invokeFeatureService(protos);
     }
 
+    /**
+     * 获取用户行为特征(用户分层、启动数、ror)
+     * @param mid
+     * @return
+     */
+    public Feature getMidBehaviorFeature(String tableName, String mid) {
+        List<FeatureKeyProto> protos = new ArrayList<>();
+        protos.add(genWithMid(tableName, mid));
+        return this.invokeFeatureService(protos);
+    }
+
+
     public Feature invokeFeatureService(List<FeatureKeyProto> protos) {
 
         Map<String, String> featureMap = remoteService.getFeature(protos);

+ 11 - 0
ad-engine-service/src/main/java/com/tzld/piaoquan/ad/engine/service/predict/impl/PredictModelServiceImpl.java

@@ -77,6 +77,8 @@ public class PredictModelServiceImpl implements PredictModelService {
     private PredictStrategyBy819 predictStrategyBy819;
     @Autowired
     private PredictStrategyBy820 predictStrategyBy820;
+    @Autowired
+    private PredictStrategyByRor predictStrategyByRor;
 
     @Autowired
     private UserService userService;
@@ -237,6 +239,15 @@ public class PredictModelServiceImpl implements PredictModelService {
                     return predictResult;
                 }
             }
+            // ror行为策略
+            Map<String, Object> userRorPredict = predictStrategyByRor.predict(predictContext);
+            if (MapUtils.isNotEmpty(userRorPredict)) {
+                // 填充 819 参数
+                if (MapUtils.isNotEmpty(predictExtInfo)) {
+                    userRorPredict.putAll(predictExtInfo);
+                }
+                return userRorPredict;
+            }
 
             Map<String, Object> predictResult;
             if (expCodes.contains("599")){

+ 6 - 2
ad-engine-service/src/main/java/com/tzld/piaoquan/ad/engine/service/predict/v2/BasicPredict.java

@@ -24,8 +24,12 @@ public abstract class BasicPredict {
     protected Map<String, Object> rtnAdPredict(PredictContext ctx) {
         Map<String, Object> rtnMap = new HashMap<>();
         rtnMap.put("ad_predict", 2);
-        rtnMap.putAll(ctx.getLogParam().getScoreMap());
-        rtnMap.put("pqtId", ctx.getPqtId());
+        if (ctx != null) {
+            if( ctx.getLogParam() != null){
+                rtnMap.putAll(ctx.getLogParam().getScoreMap());
+            }
+            rtnMap.put("pqtId", ctx.getPqtId());
+        }
         return rtnMap;
     }
 

+ 212 - 0
ad-engine-service/src/main/java/com/tzld/piaoquan/ad/engine/service/predict/v2/PredictStrategyByRor.java

@@ -0,0 +1,212 @@
+package com.tzld.piaoquan.ad.engine.service.predict.v2;
+
+import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue;
+import com.tzld.piaoquan.ad.engine.commons.enums.RedisPrefixEnum;
+import com.tzld.piaoquan.ad.engine.commons.redis.AdRedisHelper;
+import com.tzld.piaoquan.ad.engine.service.feature.Feature;
+import com.tzld.piaoquan.ad.engine.service.feature.FeatureService;
+import lombok.extern.slf4j.Slf4j;
+import org.apache.commons.collections4.CollectionUtils;
+import org.apache.commons.lang3.StringUtils;
+import org.springframework.beans.factory.annotation.Autowired;
+import org.springframework.stereotype.Service;
+
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+
+/**
+ * 基于 ROR的广告预测策略
+ * <p>
+ * 核心逻辑:
+ * 1. 根据用户的历史行为特征(启动次数launchs、留存率ror、人群分层ad_level)计算展示广告的概率阈值
+ * 2. 通过 mid 的 hash 值生成伪随机分数
+ * 3. 如果分数 <= 阈值,则展示广告;否则不展示
+ * <p>
+ * 用于控制不同用户群体的广告曝光频率,实现精细化运营
+ */
+@Slf4j
+@Service
+public class PredictStrategyByRor extends BasicPredict {
+
+    /** 特征服务,用于获取用户行为特征 */
+    @Autowired
+    private FeatureService featureService;
+
+    /** Redis 客户端,用于获取基于用户特征的概率配置 */
+    @Autowired
+    private AdRedisHelper adRedisHelper;
+
+    /**
+     * Apollo 动态配置:根据 rootSessionId 尾号和 appType 进行流量分桶
+     * <p>
+     * 配置格式示例:
+     * <pre>
+     * [
+     *   {
+     *     "appType": ["0", "3"],
+     *     "tail": ["0", "1", "2"],
+     *     "config": {"default_probability": 0.5}
+     *   }
+     * ]
+     * </pre>
+     */
+    @ApolloJsonValue("${experiment.ror.root.session.id.tail.config:[]}")
+    private List<RootSessionIdTailConfigItem> configItems;
+
+    private static final String TABLE_NAME = "alg_mid_history_behavior_1month";
+
+    /**
+     * 策略名称标识
+     */
+    @Override
+    public String name() {
+        return "launch_layer_ror";
+    }
+
+    /**
+     * 核心预测方法:决定是否向用户展示广告
+     *
+     * @param ctx 预测上下文,包含 mid、appType、rootSessionId 等信息
+     * @return 预测结果 Map,包含:
+     *         - ad_predict: 1=不展示广告,2=展示广告
+     *         - score: 用户的伪随机分数
+     *         - threshold: 广告展示概率阈值
+     *         - launchs/ror/ad_level: 用户行为特征
+     *         - 返回 null 表示跳过该策略
+     */
+    @Override
+    public Map<String, Object> predict(PredictContext ctx) {
+
+        try {
+            String rootSessionId = ctx.getRootSessionId();
+
+            // 前置校验:配置为空或 rootSessionId 为空时,返回 null(跳过该策略)
+            if (CollectionUtils.isEmpty(configItems) || StringUtils.isBlank(rootSessionId)) {
+                return null;
+            }
+
+            String appType = ctx.getAppType();
+
+            // 获取默认概率阈值(基于 rootSessionId 尾号和 appType 匹配配置)
+            Double defaultProbability = getDefaultProbability(rootSessionId, appType);
+
+            // 用户不在实验分桶内,跳过该策略
+            if (defaultProbability == null) {
+                return null;
+            }
+
+            Map<String, Object> rtnMap = new HashMap<>();
+
+            // 用户行为特征变量(来自离线特征表 alg_mid_history_behavior_1month)
+            String launchs = null;   // 启动次数分桶(如 "0-5", "5-10" 等)
+            String ror = null;       // 留存率分桶
+            String adLevel = null;   // 广告等级(用户对广告的敏感度分层)
+
+            // 根据 mid 获取用户近一个月的历史行为特征
+            Feature feature = featureService.getMidBehaviorFeature(TABLE_NAME, ctx.getMid());
+
+            // 安全地提取特征值(多层 null 检查)
+            if (feature != null && feature.getUserFeature() != null && feature.getUserFeature().get("") != null) {
+                Map<String, String> algMidHistoryBehavior1month = feature.getUserFeature().get(TABLE_NAME);
+                launchs = algMidHistoryBehavior1month.get("launchs");
+                ror = algMidHistoryBehavior1month.get("ror");
+                adLevel = algMidHistoryBehavior1month.get("ad_level");
+            }
+
+            // 计算最终的广告展示概率阈值
+            // 优先使用 Redis 中基于用户特征的精细化阈值,否则使用默认阈值
+            double showAdProbability = getShowAdProbability(launchs, ror, adLevel, defaultProbability);
+
+            // 基于 mid 的 hash 值生成 [0, 1) 范围内的伪随机分数
+            // 同一个 mid 在同一小时内(RandW 每小时更新)会得到相同的分数
+            double score = this.calcScoreByMid(ctx.getMid());
+
+            // 核心决策逻辑:分数 <= 阈值 → 展示广告
+            if (score <= showAdProbability) {
+                // 展示广告,ad_predict = 2
+                rtnMap.putAll(rtnAdPredict(ctx));
+                rtnMap.put("model", this.name());
+            } else {
+                // 不展示广告,ad_predict = 1
+                rtnMap.putAll(rtnNoAdPredict(ctx));
+                rtnMap.put("no_ad_strategy", this.name());
+            }
+
+            // 记录决策相关的特征和参数,用于日志分析和效果追踪
+            rtnMap.put("score", score);
+            rtnMap.put("threshold", showAdProbability);
+            rtnMap.put("launchs", launchs);
+            rtnMap.put("ror", ror);
+            rtnMap.put("ad_level", adLevel);
+            return rtnMap;
+        } catch (Exception e) {
+            log.error("[PredictStrategyByRor] predict error, ctx: {}", ctx, e);
+            return null;
+        }
+    }
+
+    /**
+     * 获取广告展示概率阈值
+     * <p>
+     * 策略:根据用户的 (ad_level, launchs, ror) 组合从 Redis 查询对应的概率值
+     * 如果查询失败或无数据,则使用默认概率
+     *
+     * @param launchs            启动次数分桶
+     * @param ror                留存率分桶
+     * @param ad_level           人群分层
+     * @param defaultProbability 默认概率(兜底值)
+     * @return 广告展示概率阈值 [0, 1]
+     */
+    private double getShowAdProbability(String launchs, String ror, String ad_level, Double defaultProbability) {
+        // 任一特征为空,使用默认概率
+        if (StringUtils.isAnyBlank(launchs, ror, ad_level)) {
+            return defaultProbability;
+        }
+        try {
+            // 构建 Redis key:格式为 "ad_level_launchs_ror",例如 "有转化_10_0"
+            String keyId = ad_level + "_" + launchs + "_" + ror;
+            String key = String.format(RedisPrefixEnum.AD_USER_ROR_BEHAVIOR.getPrefix(), keyId);
+
+            // 从 Redis 获取概率值
+            String probability = adRedisHelper.get(key);
+
+            // 解析概率值,如果为 null 则使用默认值
+            return probability == null ? defaultProbability : Double.parseDouble(probability);
+        } catch (Exception e) {
+            // 解析失败(如非数字字符串)或 Redis 异常,记录错误并使用默认值
+            log.error("getShowAdProbability error, launchs: {}, ror: {}, ad_level: {}, e = ", launchs, ror, ad_level, e);
+            return defaultProbability;
+        }
+    }
+
+    /**
+     * 获取默认概率阈值
+     * <p>
+     * 根据 rootSessionId 的最后一位字符(尾号)和 appType 匹配配置,用于流量分桶实验
+     *
+     * @param rootSessionId 根会话 ID
+     * @param appType       应用类型
+     * @return 默认概率,如果不匹配任何配置则返回 null
+     */
+    private Double getDefaultProbability(String rootSessionId, String appType) {
+        // 前置校验
+        if (CollectionUtils.isEmpty(configItems) || StringUtils.isAnyBlank(rootSessionId) || appType == null) {
+            return null;
+        }
+
+        // 提取 rootSessionId 的最后一个字符作为尾号,用于流量分桶
+        String tail = rootSessionId.substring(rootSessionId.length() - 1);
+
+        // 遍历配置项,查找同时匹配 appType 和尾号的配置
+        for (RootSessionIdTailConfigItem item : configItems) {
+            if (item.getAppType().contains(appType) && item.getTail().contains(tail)) {
+                return item.getConfig().get("default_probability");
+            }
+        }
+
+        // 未匹配到任何配置
+        return null;
+    }
+
+}