|
@@ -1,5 +1,6 @@
|
|
|
package com.tzld.piaoquan.ad.engine.service.predict.model.threshold;
|
|
|
|
|
|
+import com.alibaba.fastjson.JSONArray;
|
|
|
import com.alibaba.fastjson.JSONObject;
|
|
|
import com.tzld.piaoquan.ad.engine.commons.score.AdConfig;
|
|
|
import com.tzld.piaoquan.ad.engine.commons.score.ScoreParam;
|
|
@@ -74,7 +75,7 @@ public class ScoreV2ThresholdPredictModel extends ThresholdPredictModel {
|
|
|
List<AdRankItem> scoreResult = ScorerUtils
|
|
|
.getScorerPipeline(BREAK_CONFIG)
|
|
|
.scoring(scoreParam, userAdFeature, rankItems);
|
|
|
-
|
|
|
+ log.info("svc=predict modelName=modelV2 result={}", JSONArray.toJSONString(scoreResult));
|
|
|
// 找出ctr*cvr最大的
|
|
|
double max = -1;
|
|
|
AdRankItem maxItem = null;
|
|
@@ -100,7 +101,6 @@ public class ScoreV2ThresholdPredictModel extends ThresholdPredictModel {
|
|
|
result.put("threshold", threshold);
|
|
|
result.put("score", maxItem == null ? -1 : maxItem.getScore());
|
|
|
result.put("ad_predict", adPredict);
|
|
|
- log.info("svc=predict modelName=modelV2 result={}", JSONObject.toJSONString(result));
|
|
|
|
|
|
return result;
|
|
|
}
|