123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993 |
- #!/usr/bin/env python
- # coding: utf-8
- # In[2]:
- import warnings
- warnings.filterwarnings("ignore")
- from sklearn.metrics import r2_score
- import os
- import pandas as pd
- import gc
- import math
- import numpy as np
- import time
- from sklearn.linear_model import SGDRegressor
- from sklearn.linear_model import SGDClassifier
- import lightgbm as lgb
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import StratifiedKFold
- from sklearn import metrics
- import pickle
- from sklearn.metrics import mean_squared_error
- import seaborn as sns
- import matplotlib.pylab as plt
- from odps import ODPS
- from odps.df import DataFrame as odpsdf
- from datetime import datetime as dt
- import datetime
- # In[3]:
- now_date = datetime.date.today()
- # day = datetime.datetime.strftime(now_date, '%Y%m%d')
- diff_1 = datetime.timedelta(days=1)
- diff_5 = datetime.timedelta(days=7)
- input_dt = now_date - diff_1
- input_day = datetime.datetime.strftime(input_dt, '%Y%m%d')
- now_day = datetime.datetime.strftime(now_date, '%Y%m%d')
- train_dt = now_date - diff_5
- train_day = datetime.datetime.strftime(train_dt, '%Y%m%d')
- # In[4]:
- add_feature = [
- 'all_return_day1_return_count', # -- 1/3/7/14日内总回流 #12
- 'all_return_day3_return_count',
- 'all_return_day7_return_count',
- 'all_return_day14_return_count',
- 'three_return_day1_return_count', # -- 1/3/7/14日内前三层回流 #14
- 'three_return_day3_return_count',
- 'three_return_day7_return_count',
- 'three_return_day14_return_count',
- 'four_up_return_day1_return_count', # -- 1/3/7/14日内四+层回流 #15
- 'four_up_return_day3_return_count',
- 'four_up_return_day7_return_count',
- 'four_up_return_day14_return_count',
- 'one_return_day1_return_count', # -- 1/3/7/14日内一层回流 #13
- 'one_return_day3_return_count',
- 'one_return_day7_return_count',
- 'one_return_day14_return_count',
- 'four_up_return_div_three_return_day1', # -- 1/3/7/14日内四+层回流/前三层回流 #23
- 'four_up_return_div_three_return_day3',
- 'four_up_return_div_three_return_day7',
- 'four_up_return_div_three_return_day14',
- 'all_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内回流 #8
- 'all_return_day3_view_day3_return_count',
- 'all_return_day7_view_day7_return_count',
- 'all_return_day14_view_day14_return_count',
- 'three_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内前三层回流 #10
- 'three_return_day3_view_day3_return_count',
- 'three_return_day7_view_day7_return_count',
- 'three_return_day14_view_day14_return_count',
- 'four_up_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内四+层回流 # 11
- 'four_up_return_day3_view_day3_return_count',
- 'four_up_return_day7_view_day7_return_count',
- 'four_up_return_day14_view_day14_return_count',
- 'one_return_day1_view_day1_return_count', ##-- 1/3/7/14日内曝光在1/3/7/14日内一层回流 #9
- 'one_return_day3_view_day3_return_count',
- 'one_return_day7_view_day7_return_count',
- 'one_return_day14_view_day14_return_count',
- 'all_return_day1_on_day1_return_count', # 前day1+1 / day1+3/day1+7/day1+14 到前 day1+1日内曝光在 day1的总回流 #16
- 'all_return_day3_on_day1_return_count',
- 'all_return_day7_on_day1_return_count',
- 'all_return_day14_on_day1_return_count',
- 'four_up_return_day1_view_day1_return_div_three_d1', # -- 1/3/7/14日内曝光在1/3/7/14日内四+层回流/前三层回流 #22
- 'four_up_return_day3_view_day3_return_div_three_d3',
- 'four_up_return_day7_view_day7_return_div_three_d7',
- 'four_up_return_day14_view_day14_return_div_three_d14',
- 'day1ctr', # -- 1/3/7/14/30/60日内播放/曝光 #17
- 'day3ctr',
- 'day7ctr',
- 'day14ctr',
- 'day30ctr',
- 'day60ctr',
- 'day1sov', # -- 1/3/7/14/30/60日内分享/曝光 #18
- 'day3sov',
- 'day7sov',
- 'day14sov',
- 'day30sov',
- 'day60sov',
- 'day1rov', # -- 1/3/7/14日内曝光的回流/曝光 #19
- 'day3rov',
- 'day7rov',
- 'day14rov',
- 'day1soc', # -- 1/3/7/14/30/60日内分享/播放 #20
- 'day3soc',
- 'day7soc',
- 'day14soc',
- 'day30soc',
- 'day60soc',
- 'day1roc', # -- 1/3/7/14日内曝光的回流/播放 #21
- 'day3roc',
- 'day7roc',
- 'day14roc',
- 'oneday_day1rov', # -- 1/3/7/14日内曝光在今日的回流/ 1/3/7/14日内曝光 #24
- 'oneday_day3rov',
- 'oneday_day7rov',
- 'oneday_day14rov',
- 'futre7dayreturn'
-
- ,'todyviewcount_rank'
- ,'day1viewcount_rank'
- ]
- featurename = [
- 'dt',
- 'videoid',
- 'day1playcount',
- 'day1returncount',
- 'day1sharecount',
- 'day1viewcount',
- 'day14playcount',
- 'day14returncount',
- 'day14sharecount',
- 'day14viewcount',
- 'day30playcount',
- 'day30returncount',
- 'day30sharecount',
- 'day30viewcount',
- 'day3playcount',
- 'day3returncount',
- 'day3sharecount',
- 'day3viewcount',
- 'day60playcount',
- 'day60returncount',
- 'day60sharecount',
- 'day60viewcount',
- 'day7playcount',
- 'day7returncount',
- 'day7sharecount',
- 'day7viewcount',
- 'videocategory11',
- 'videocategory12',
- 'videocategory45',
- 'videocategory49',
- 'videocategory1',
- 'videocategory2',
- 'videocategory3',
- 'videocategory4',
- 'videocategory5',
- 'videocategory6',
- 'videocategory7',
- 'videocategory8',
- 'videocategory9',
- 'videocategory85',
- 'videocategory10',
- 'videocategory555',
- 'usercategory1',
- 'usercategory2',
- 'usercategory3',
- 'usercategory4',
- 'usercategory5',
- 'usercategory6',
- 'usercategory7',
- 'usercategory8',
- 'usercategory9',
- 'usercategory10',
- 'usercategory11',
- 'usercategory12',
- 'usercategory45',
- 'usercategory49',
- 'usercategory85',
- 'usercategory555',
- 'todyviewcount',
- 'day5returncount_1_stage',
- 'day5returncount_2_stage',
- 'day5returncount_3_stage',
- 'day5returncount_4_stage',
- 'stage_one_retrn',
- 'stage_two_retrn',
- 'stage_three_retrn',
- 'stage_four_retrn']
- words = ['videotags','words_without_tags']
- featurename = featurename + add_feature + words
- print(len(featurename))
- # In[5]:
- def getRovfeaturetable(dt):
- odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
- endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
- read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
- featureArray = []
- for record in odps.read_table('rov_feature_add_v1', partition='dt=%s' % dt):
- valueFeature = {}
- for i in featurename:
- if i == 'dt':
- valueFeature[i] = dt
- else:
- valueFeature[i] = record[i]
- featureArray.append(valueFeature)
- featureArray = pd.DataFrame(featureArray)
- print(dt, 'feature table finish')
- return featureArray
- def getRovtestable(dt):
- odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
- endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
- read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
- featureArray = []
- for record in odps.read_table('rov_predict_table_add_v1', partition='dt=%s' % dt):
- valueFeature = {}
- for i in featurename:
- if i == 'dt':
- valueFeature[i] = dt
- else:
- valueFeature[i] = record[i]
- featureArray.append(valueFeature)
- featureArray = pd.DataFrame(featureArray)
- print(dt, 'test table finish')
- return featureArray
- def getestingdata(date):
- new_date = dt.strptime(date, '%Y%m%d')
- datelist = []
- testlist = []
- for i in range(0, 1):
- delta = datetime.timedelta(days=i)
- tar_dt = new_date - delta
- datelist.append(tar_dt.strftime("%Y%m%d"))
- print(datelist)
- for tm in datelist:
- testlist.append(getRovtestable(tm))
- testdata = pd.concat(testlist)
- testdata.reset_index(inplace=True)
- testdata = testdata.drop(axis=1, columns='index')
- return testdata
- def getrainingdata(date):
- new_date = dt.strptime(date, '%Y%m%d')
- datelist = []
- trainlist = []
- for i in range(0, 30):
- delta = datetime.timedelta(days=i)
- tar_dt = new_date - delta
- datelist.append(tar_dt.strftime("%Y%m%d"))
- print(datelist)
- for tm in datelist:
- trainlist.append(getRovfeaturetable(tm))
- traindata = pd.concat(trainlist)
- traindata.reset_index(inplace=True)
- traindata = traindata.drop(axis=1, columns='index')
- return traindata
- traindata = getrainingdata(train_day)
- data_test_ori_rk = getestingdata(input_day)
- # In[6]:
- def select_recent_video(df):
- """对每一个视频添加row number,按照日期排序,最后选取最近的那一天"""
- df['dt'] = df['dt'].astype(int)
- df['rk'] = df['dt'].groupby(df['videoid']).rank(ascending=0, method='first')
- df = df[df['rk'] == 1]
- return df
- data_test_ori = select_recent_video(data_test_ori_rk)
- data_test_ori.loc[data_test_ori['dt'] != int(input_day), 'futre7dayreturn'] = 0
- data_test_ori = data_test_ori.drop(axis=1, columns='rk')
- # In[7]:
- ## 去重复,保证每个视频 每一天 有切仅有一条数据。
- traindata.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
- data_test_ori.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
- # In[8]:
- def basic_cal(df):
-
- # df['weighted_retrn'] = df['stage_one_retrn'].astype('int')*0.4 + \
- # df['stage_two_retrn'].astype('int')*0.3 + \
- # df['stage_three_retrn'].astype('int')*0.3
-
-
- df['weighted_retrn'] = df['futre7dayreturn'].astype('int')
- # df['weighted_retrn'] = df['futr5returncount'].astype('int')
- # day1viewcount 如果是零,就返回 rov,rov_log 变为零
- df['weighted_retrn_log'] = df.apply(lambda x: np.log(x['weighted_retrn'] + 1),axis=1)
- # df['rov'] = df.apply(lambda x: x['weighted_retrn'] / x['todyviewcount'] \
- # if x['todyviewcount']!=0 else 0,axis=1)
- # df['rov_log'] = df.apply(lambda x: np.log(x['rov'] + 1),axis=1)
-
- # thresh = np.percentile(df[df['weighted_retrn']>0]['weighted_retrn'],50)
- ## 设置回流大于thresh, label就是1, 没有分享或有分享但是回流数是零的标为0
- df['return_back'] = df.apply(lambda x:1 if x['weighted_retrn']> 0 else 0,axis=1)
-
- return df
- data_train = basic_cal(traindata)
- data_test = basic_cal(data_test_ori)
- # In[9]:
- def today_view_category(df):
- ### 对当天的曝光量分三个级别,未来三天的曝光量分3个级别,添加Category feaure
- data_test1_view1 = df.loc[data_test['day1viewcount_rank'] > 10000]['day1viewcount'].mean()
- data_test1_view2 = df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000)]['day1viewcount'].mean()
- data_test1_view3 = df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000)]['day1viewcount'].mean()
- data_test1_view4 = df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000)]['day1viewcount'].mean()
- data_test1_view5 = df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300)]['day1viewcount'].mean()
- data_test1_view6 = df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100)]['day1viewcount'].mean()
- data_test1_view7 = df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30)]['day1viewcount'].mean()
-
- df.loc[df['day1viewcount_rank'] > 10000, 'todyviewcount'] = data_test1_view3
- df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000), 'todyviewcount'] = data_test1_view3
- df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000), 'todyviewcount'] = data_test1_view4
- df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000), 'todyviewcount'] = data_test1_view5
- df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300), 'todyviewcount'] = data_test1_view6
- df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100), 'todyviewcount'] = data_test1_view7
- df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30), 'todyviewcount'] = data_test1_view7
-
- return df
- data_test = today_view_category(data_test)
- # In[10]:
- # 首页特征
- root_page_1day = ['day1playcount', 'day1returncount', 'day1sharecount', 'day1viewcount']
- root_page_3day = ['day3playcount', 'day3returncount', 'day3sharecount', 'day3viewcount']
- root_page_7day = ['day7playcount', 'day7returncount', 'day7sharecount', 'day7viewcount']
- root_page_14day = ['day14playcount', 'day14returncount', 'day14sharecount', 'day14viewcount']
- root_page_30day = ['day30playcount', 'day30returncount', 'day30sharecount', 'day30viewcount']
- root_page_60day = ['day60playcount', 'day60returncount', 'day60sharecount', 'day60viewcount']
- return_5day = ['day5returncount_1_stage', 'day5returncount_2_stage', 'day5returncount_3_stage',
- 'day5returncount_4_stage']
- cate_feat = ['videocategory1', 'videocategory10', 'videocategory11', 'videocategory12',
- 'videocategory2', 'videocategory3', 'videocategory4', 'videocategory45',
- 'videocategory49', 'videocategory5', 'videocategory6',
- 'videocategory7', 'videocategory8', 'videocategory85', 'videocategory9', 'videocategory555']
- one_hot_feature = ['videotags','words_without_tags','videoid']
- # cate_view_feat = [ 'todyview_low','todyview_median','todyview_high']
- # cate_view_feat = ['todyview_1', 'todyview_2', 'todyview_3', 'todyview_4', 'todyview_5', 'todyview_6', 'todyview_7',
- # 'todyview_8']
- # In[11]:
- def cal_feature(df):
- start = time.time()
- for i in range(len(root_page_1day)):
-
-
- newfeat_div = root_page_60day[i] + '_divide_' + root_page_30day[i]
- # df[newfeat_div] = df.apply(lambda s: s[root_page_30day[i]] / s[root_page_60day[i]]\
- # if s[root_page_60day[i]] != 0 else 0, axis=1)
- df[newfeat_div] = df[root_page_30day[i]]/ df[root_page_60day[i]]
-
- newfeat_diff = root_page_60day[i] + '_dif_' + root_page_30day[i]
- # df[newfeat_diff] = df.apply(lambda s: s[root_page_60day[i]]-s[root_page_30day[i]],\
- # axis=1)
- df[newfeat_diff] = df[root_page_60day[i]] - df[root_page_30day[i]]
- end = time.time()
- running_time = end-start
- print('stage 1: time cost : %.5f sec' %running_time)
-
-
- start = time.time()
- for i in range(len(root_page_1day)):
- newfeat_div = root_page_30day[i] + '_divide_' + root_page_7day[i]
- # df[newfeat_div] = df.apply(lambda s: s[root_page_7day[i]] / s[root_page_30day[i]]\
- # if s[root_page_30day[i]] != 0 else 0, axis=1)
- df[newfeat_div] = df[root_page_7day[i]]/df[root_page_30day[i]]
- newfeat_diff = root_page_30day[i] + '_dif_' + root_page_7day[i]
- # df[newfeat_diff] = df.apply(lambda s: s[root_page_7day[i]] - s[root_page_3day[i]],\
- # axis=1)
- df[newfeat_diff] = df[root_page_7day[i]] - df[root_page_3day[i]]
- end = time.time()
- running_time = end-start
- print('stage 2: time cost : %.5f sec' %running_time)
-
-
- start = time.time()
- for i in range(len(root_page_1day)):
- newfeat_div = root_page_7day[i] + '_divide_' + root_page_3day[i]
- # df[newfeat_div] = df.apply(lambda s: s[root_page_3day[i]] / s[root_page_7day[i]]\
- # if s[root_page_7day[i]] != 0 else 0, axis=1)
- df[newfeat_div] = df[root_page_3day[i]]/df[root_page_7day[i]]
- newfeat_diff = root_page_7day[i] + '_dif_' + root_page_3day[i]
- # df[newfeat_diff] = df.apply(lambda s: s[root_page_7day[i]] - s[root_page_3day[i]],\
- # axis=1)
- df[newfeat_diff] = df[root_page_7day[i]] - df[root_page_3day[i]]
- end = time.time()
- running_time = end-start
- print('stage 3: time cost : %.5f sec' %running_time)
-
- start = time.time()
- for i in range(len(root_page_1day)):
- newfeat_div = root_page_3day[i] + '_divide_' + root_page_1day[i]
- # df[newfeat_div] = df.apply(lambda s: s[root_page_1day[i]] / s[root_page_3day[i]]\
- # if s[root_page_3day[i]] != 0 else 0, axis=1)
- df[newfeat_div] = df[root_page_1day[i]] / df[root_page_3day[i]]
- newfeat_diff = root_page_3day[i] + '_dif_' + root_page_1day[i]
- # df[newfeat_diff] = df.apply(lambda s: s[root_page_3day[i]] - s[root_page_1day[i]],\
- # axis=1)
- df[newfeat_diff] = df[root_page_3day[i]] - df[root_page_1day[i]]
- end = time.time()
- running_time = end-start
- print('stage 4: time cost : %.5f sec' %running_time)
- df = df.replace([np.inf, -np.inf], np.nan)
- df = df.fillna(0)
-
-
- return df
- # In[12]:
- data_train = data_train.fillna(0)
- data_test = data_test.fillna(0)
- data_train = cal_feature(data_train)
- data_test = cal_feature(data_test)
- # In[13]:
- print('data_train shape:', data_train.shape)
- print('data_test shape:', data_test.shape)
- # In[14]:
- features = ['day1playcount', 'day1returncount', 'day1sharecount', 'day1viewcount', 'day30playcount', 'day30returncount',
- 'day30sharecount', 'day30viewcount', 'day3playcount', 'day3returncount', 'day3sharecount', 'day3viewcount',
- 'day60playcount', 'day60returncount', 'day60sharecount', 'day60viewcount', 'day7playcount', 'day7returncount',
- 'day7sharecount', 'day7viewcount', 'usercategory1', 'usercategory2', 'usercategory3', 'usercategory4',
- 'usercategory5', 'usercategory6', 'usercategory7', 'usercategory8', 'usercategory9', 'usercategory10',
- 'usercategory11', 'usercategory12', 'usercategory45', 'usercategory49', 'usercategory85','usercategory555',
- 'todyviewcount',
- 'day5returncount_1_stage', 'day5returncount_2_stage', 'day5returncount_3_stage', 'day5returncount_4_stage',
- 'stage_one_retrn', 'stage_two_retrn', 'stage_three_retrn', 'stage_four_retrn', 'all_return_day1_return_count',
- 'all_return_day3_return_count', 'all_return_day7_return_count', 'all_return_day14_return_count',
- 'three_return_day1_return_count', 'three_return_day3_return_count', 'three_return_day7_return_count',
- 'three_return_day14_return_count', 'four_up_return_day1_return_count', 'four_up_return_day3_return_count',
- 'four_up_return_day7_return_count', 'four_up_return_day14_return_count', 'one_return_day1_return_count',
- 'one_return_day3_return_count', 'one_return_day7_return_count', 'one_return_day14_return_count',
- 'four_up_return_div_three_return_day1', 'four_up_return_div_three_return_day3',
- 'four_up_return_div_three_return_day7', 'four_up_return_div_three_return_day14',
- 'all_return_day1_view_day1_return_count', 'all_return_day3_view_day3_return_count',
- 'all_return_day7_view_day7_return_count', 'all_return_day14_view_day14_return_count',
- 'three_return_day1_view_day1_return_count', 'three_return_day3_view_day3_return_count',
- 'three_return_day7_view_day7_return_count', 'three_return_day14_view_day14_return_count',
- 'four_up_return_day1_view_day1_return_count', 'four_up_return_day3_view_day3_return_count',
- 'four_up_return_day7_view_day7_return_count', 'four_up_return_day14_view_day14_return_count',
- 'one_return_day1_view_day1_return_count', 'one_return_day3_view_day3_return_count',
- 'one_return_day7_view_day7_return_count', 'one_return_day14_view_day14_return_count',
- 'all_return_day1_on_day1_return_count', 'all_return_day3_on_day1_return_count',
- 'all_return_day7_on_day1_return_count', 'all_return_day14_on_day1_return_count',
- 'four_up_return_day1_view_day1_return_div_three_d1', 'four_up_return_day3_view_day3_return_div_three_d3',
- 'four_up_return_day7_view_day7_return_div_three_d7', 'four_up_return_day14_view_day14_return_div_three_d14',
- 'day1ctr', 'day3ctr', 'day7ctr', 'day14ctr', 'day30ctr', 'day60ctr', 'day1sov', 'day3sov', 'day7sov',
- 'day14sov', 'day30sov', 'day60sov', 'day1rov', 'day3rov', 'day7rov', 'day14rov', 'day1soc', 'day3soc',
- 'day7soc', 'day14soc', 'day30soc', 'day60soc', 'day1roc', 'day3roc', 'day7roc', 'day14roc', 'oneday_day1rov',
- 'oneday_day3rov', 'oneday_day7rov', 'oneday_day14rov',
- 'day60playcount_divide_day30playcount', 'day60playcount_dif_day30playcount',
- 'day60returncount_divide_day30returncount', 'day60returncount_dif_day30returncount',
- 'day60sharecount_divide_day30sharecount', 'day60sharecount_dif_day30sharecount',
- 'day60viewcount_divide_day30viewcount', 'day60viewcount_dif_day30viewcount',
- 'day30playcount_divide_day7playcount', 'day30playcount_dif_day7playcount',
- 'day30returncount_divide_day7returncount', 'day30returncount_dif_day7returncount',
- 'day30sharecount_divide_day7sharecount', 'day30sharecount_dif_day7sharecount',
- 'day30viewcount_divide_day7viewcount', 'day30viewcount_dif_day7viewcount',
- 'day7playcount_divide_day3playcount', 'day7playcount_dif_day3playcount',
- 'day7returncount_divide_day3returncount', 'day7returncount_dif_day3returncount',
- 'day7sharecount_divide_day3sharecount', 'day7sharecount_dif_day3sharecount',
- 'day7viewcount_divide_day3viewcount', 'day7viewcount_dif_day3viewcount', 'day3playcount_divide_day1playcount',
- 'day3playcount_dif_day1playcount', 'day3returncount_divide_day1returncount',
- 'day3returncount_dif_day1returncount', 'day3sharecount_divide_day1sharecount',
- 'day3sharecount_dif_day1sharecount', 'day3viewcount_divide_day1viewcount',
- 'day3viewcount_dif_day1viewcount']
- # In[15]:
- def dataprepare(df_pre):
- # 直接将特征送进去,不加交叉特征。
- # 是否对数据补零
- df_pre = df_pre.fillna(0)
- df_new_feature = df_pre[features]
- # df_onehot_feature = df_pre[one_hot_feature]
- # df_new_feature = pd.concat([df_pre.loc[:, 'all_return_day14_on_day1_return_count':'day7viewcount'], \
- # df_pre.loc[:, 'four_up_return_day14_return_count': \
- # 'four_up_return_div_three_return_day7'], \
- # df_pre.loc[:, 'one_return_day14_return_count':'oneday_day7rov'],
- # df_pre.loc[:,
- # 'three_return_day14_return_count':'three_return_day7_view_day7_return_count'],
- # df_pre.loc[:, 'usercategory1':'usercategory9'], df_pre.loc[:,
- # 'day60playcount_divide_day30playcount':'day3viewcount_dif_day1viewcount']],
- # axis=1)
- # df_new_feature = pd.concat([df_pre.loc[:,'day1playcount':'day7viewcount'],\
- # df_pre.loc[:,'day60playcount_divide_day30playcount':\
- # 'day5returncount_4_stage_dif_day5returncount_3_stage'], \
- # df_pre.loc[:,'usercategory1':'usercategory9']], axis=1)
- df_target = df_pre['weighted_retrn_log']
- df_new_feature = pd.concat([df_new_feature, df_pre[cate_feat],df_pre[one_hot_feature]], axis=1)
- return df_new_feature, df_target
- # In[16]:
- recall_video = pd.read_csv('/root/ROVtrain/readonlinetable/result/recall_' + input_day[-4:] + '.csv')
- # In[17]:
- ten_percent_thresh = recall_video['score'].min()
- if ten_percent_thresh < 0.4:
- recall_video_stage_one = recall_video[recall_video['score'] > 0.4]
- else:
- recall_video_stage_one = recall_video[recall_video['score'] > ten_percent_thresh]
- # In[18]:
- data_test['videoid'] = data_test['videoid'].astype('int')
- data_train = data_train[data_train['weighted_retrn'] > 0]
- print(data_train.shape, 'train shape')
- data_test = pd.merge(data_test, recall_video_stage_one, on=['videoid'], how='inner')
- print('score>0.5 video_count:', data_test.shape)
- # In[19]:
- df_new_feature,df_target= dataprepare(data_train)
- df_new_feature_test, df_target_test = dataprepare(data_test)
- # In[20]:
- #数值
- from scipy import sparse
- df_new_feature_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature).loc[:,'day1playcount':'videocategory555']))
- df_new_feature_test_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature_test).loc[:,'day1playcount':'videocategory555']))
- print('value feature generate successfully')
- # In[21]:
- #videoid
- train_videoid = pd.DataFrame(df_new_feature).loc[:,'videoid']
- test_videoid = pd.DataFrame(df_new_feature_test).loc[:,'videoid']
- train_videoid_list = pd.DataFrame(df_new_feature).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videoid']),1).tolist()
- test_videoid_list = pd.DataFrame(df_new_feature_test).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videoid']),1).tolist()
- allvideo_raw = list(set(np.array(pd.concat([train_videoid,test_videoid])).tolist()))
- allvideo = np.array(allvideo_raw).reshape(len(allvideo_raw),1).tolist()
- from sklearn.preprocessing import MultiLabelBinarizer
- mlb_model_videoid = MultiLabelBinarizer(sparse_output=True).fit(allvideo)
- train_videoid = mlb_model_videoid.transform(train_videoid_list)
- test_videoid = mlb_model_videoid.transform(test_videoid_list)
- print('videoid feature generate successfully')
- # In[23]:
- len(mlb_model_videoid.classes_)
- # In[24]:
- def tag_preprocessing(filename):
- #读取tag分词结果
- tag_txt = open("/root/ROVtrain/tfidfCompution/"+ filename +".txt","r") #设置文件对象
- ftextlist = tag_txt.readlines() # 同上
- tag_txt.close() #关闭文件
-
- #转为corpus
- tagList = str(ftextlist).replace('[','').replace(']','').replace("'","").replace("'","").split(',')
- tag = np.array(tagList).reshape(len(tagList),1).tolist()
-
-
- #将词特征转为list形式
- train_tag_feature = pd.DataFrame(df_new_feature).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videotags']),1).tolist()
- test_tag_feature = pd.DataFrame(df_new_feature_test).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videotags']),1).tolist()
-
- #稀疏特征
- mlb_model_tag = MultiLabelBinarizer(sparse_output=True).fit(tag)
- train_tag = mlb_model_tag.transform(train_tag_feature)
- test_tag = mlb_model_tag.transform(test_tag_feature)
-
- return mlb_model_tag.classes_,train_tag,test_tag
- # In[25]:
- #读取tf,idf
- def get_tag_tfidf(dt, tfidf_table_name):
- odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'videoods',
- endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
- read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
- tag_dict = {}
- for record in odps.read_table(tfidf_table_name, partition='dt=%s' % dt):
- tag_dict[record[0]] = record[1]
- return tag_dict
- # In[26]:
- def ttfidf_list_generation(tag_corpus,tag_dict):
- tag_tfidf_list = []
- for i in tag_corpus:
- try :
- tag_tfidf_list.append(tag_dict[i])
- except:
- tag_tfidf_list.append(0)
- return tag_tfidf_list
- # In[27]:
- #获取tag-one-hot
- tags ,train_tag,test_tag = tag_preprocessing('tag')
- #获取tag tfidf
- tag_dict = get_tag_tfidf('20200305','video_tag_tf_idf')
- print('lenth tag_dict:',len(tag_dict))
- #获取tfidf_tag 稀疏矩阵
- tag_corpus = tags.tolist() #corpus
- tag_tfidf_list = ttfidf_list_generation(tag_corpus,tag_dict )
- tag_tf_idf_matrix = sparse.csr_matrix(np.array(tag_tfidf_list))
- tag_feature_train = train_tag.multiply(tag_tf_idf_matrix)
- tag_feature_test = test_tag.multiply(tag_tf_idf_matrix)
- print('tag tfidf feature generate successfully')
- print('tag dimension:', len(tag_tfidf_list))
- # In[28]:
- #获取values without tag
- words ,train_words,test_words = tag_preprocessing('words_no_tag')
- #获取words tfidf
- words_dict = get_tag_tfidf('20200305','video_words_without_tags_tfidf')
- print('lenth words_dict:',len(words_dict))
- #获取tfidf_tag 稀疏矩阵
- words_corpus = words.tolist() #corpus
- words_tfidf_list = ttfidf_list_generation(words_corpus,words_dict )
- words_tf_idf_matrix = sparse.csr_matrix(np.array(words_tfidf_list))
- words_feature_train = train_words.multiply(words_tf_idf_matrix)
- words_feature_test = test_words.multiply(words_tf_idf_matrix)
- print('tag tfidf feature generate successfully')
- print('words dimension:', len(words_tfidf_list))
- # In[32]:
- #cancat 特征
- from scipy.sparse import hstack
- #训练特征
- df_new_feature = hstack([df_new_feature_part_one,train_videoid,tag_feature_train, words_feature_train])
- df_new_feature_test = hstack([df_new_feature_test_part_one,test_videoid,tag_feature_test,words_feature_test])
- #target
- df_target_test = sparse.csr_matrix(pd.DataFrame(df_target_test).values).toarray()
- df_target = sparse.csr_matrix(pd.DataFrame(df_target).values).toarray()
- # In[33]:
- df_target.size
- # In[34]:
- param = {'num_leaves': 18,
- 'min_data_in_leaf': 60,
- 'objective': 'regression',
- 'max_depth': -1,
- 'learning_rate': 0.01,
- "min_child_samples": 30,
- "boosting": "gbdt",
- "feature_fraction": 0.8,
- "bagging_freq": 1,
- "bagging_fraction": 0.8,
- "bagging_seed": 11,
- "metric": 'rmse',
- "lambda_l1": 0.1,
- "verbosity": -1,
- "nthread": 4,
- # 'max_bin': 512,
- "random_state": 4590}
- folds = StratifiedKFold(n_splits=4, shuffle=True, random_state=4590)
- oof = np.zeros(len(pd.DataFrame(df_new_feature.toarray())))
- predictions = np.zeros(len(df_target_test))
- feature_importance_df = pd.DataFrame()
- # In[ ]:
- # In[46]:
- values_lenth = len(features + cate_feat)
- video_id_lenth = len(mlb_model_videoid.classes_)
- tag_length = len(tag_tfidf_list)
- word_length = len(words_tfidf_list)
- print(values_lenth)
- print(video_id_lenth)
- print(tag_length)
- print(word_length)
- # In[36]:
- change_view = pd.DataFrame(pd.DataFrame(df_new_feature_test.toarray()))
- change_view = change_view.sort_index()
- # In[64]:
- # In[67]:
- for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_new_feature, data_train['return_back'].values)):
- print("folds {}".format(fold_))
- trn_data = lgb.Dataset(df_new_feature.tocsr()[trn_idx,:], label=pd.DataFrame(df_target).iloc[trn_idx])
- val_data = lgb.Dataset(df_new_feature.tocsr()[val_idx,:], label=pd.DataFrame(df_target).iloc[val_idx])
- num_round = 10000
- clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100,
- early_stopping_rounds=200)
- oof[val_idx] = clf.predict(df_new_feature.tocsr()[val_idx,:], num_iteration=clf.best_iteration)
- predictions += clf.predict(df_new_feature_test, num_iteration=clf.best_iteration) / folds.n_splits
- fold_importance_df = pd.DataFrame()
-
- column = features+cate_feat+mlb_model_videoid.classes_.tolist()+ tag_corpus + words_corpus
- fold_importance_df["Feature"] = np.array(column)
-
- fold_importance_df["importance"] = clf.feature_importance()
- fold_importance_df["fold"] = fold_ + 1
- feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
- # In[72]:
- print(values_lenth)
- print(video_id_lenth)
- print(tag_length)
- print(word_length)
- fold1_df = feature_importance_df.loc[feature_importance_df['fold']==1]
- fold2_df = feature_importance_df.loc[feature_importance_df['fold']==2]
- fold3_df = feature_importance_df.loc[feature_importance_df['fold']==3]
- fold4_df = feature_importance_df.loc[feature_importance_df['fold']==4]
- # In[95]:
- def featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length):
- Feature_Data= pd.DataFrame()
- for df in (fold1_df,fold2_df,fold3_df,fold4_df):
- fold1_df1 = df.iloc[0:values_lenth,:]
- videoid_fold1_importance = df.iloc[values_lenth:values_lenth+video_id_lenth,:]['importance'].sum()
- fold1_df2 = pd.DataFrame([{'Feature':'videoid','importance':videoid_fold1_importance,'fold':1}])
- tag_fold1_importance = df.iloc[values_lenth+video_id_lenth:values_lenth+video_id_lenth+tag_length,:]['importance'].sum()
- fold1_df3 = pd.DataFrame([{'Feature':'tags','importance':tag_fold1_importance,'fold':1}])
- words_fold1_importance = df.iloc[values_lenth+video_id_lenth+tag_length:values_lenth+video_id_lenth+tag_length+word_length,:]['importance'].sum()
- fold1_df4 = pd.DataFrame([{'Feature':'words','importance':words_fold1_importance,'fold':1}])
-
-
- Feature_Data = pd.concat([Feature_Data,fold1_df1,fold1_df2,fold1_df3,fold1_df4])
-
- return Feature_Data
- # In[96]:
- feature_importance_df = featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length)
- # In[98]:
- print('oof_rmse:', np.sqrt(mean_squared_error(df_target, oof)))
- print('oof_mse:', mean_squared_error(df_target, oof))
- print('test_rmse:', np.sqrt(mean_squared_error(df_target_test, predictions)))
- print('test_mse:', mean_squared_error(df_target_test, predictions))
- # In[99]:
- def MAPE(true, pred):
- true = np.array(true)
- sum_ = 0
- count = 0
- for i in range(len(true)):
- if true[i] != 0:
- sum_ = sum_ + np.abs(true[i] - pred[i]) / true[i]
- count = count + 1
- else:
- continue
- return sum_ / count
- print('oof_mape:', MAPE(df_target, oof))
- print('test_mape:', MAPE(df_target_test, predictions))
- # In[100]:
- # from sklearn.metrics import r2_score
- print('verification r2:', r2_score(df_target, oof))
- print('test r2:', r2_score(df_target_test, predictions))
- sub_df_ = pd.DataFrame({"videoid": data_test["videoid"].values})
- sub_df_['score'] = predictions
- print('regre ranking shape', sub_df_.shape)
- # In[101]:
- if ten_percent_thresh < 0.4:
- rest_video = recall_video[recall_video['score'] <= 0.35]
- else:
- rest_video = recall_video[recall_video['score'] <= ten_percent_thresh]
- # recall_all = pd.concat([rest_video,sub_df_],axis=0).sort_values(by=['score'],ascending=False)
- # recall_all.columns = ['videoId', 'score']
- recall_all = sub_df_.sort_values(by=['score'], ascending=False)
- recall_all.columns = ['videoId', 'score']
- print('result score shape', recall_all.shape)
- # In[102]:
- # recall_all.to_json('/root/ROVtrain/readonlinetable/video_score_add_newfeature'+ datetime.datetime.strftime(now_date, '%Y%m%d')[-4:] + '.json',orient='records')
- # print('save json success')
- recall_all.to_json(
- '/root/ROVtrain/readonlinetable/result/video_score_' + datetime.datetime.strftime(now_date, '%Y%m%d')[
- -4:] + '.json', orient='records')
- print('save json success')
- # In[103]:
- sub_df_ = pd.DataFrame({"videoid": data_test["videoid"].values})
- sub_df_['score'] = predictions
- compare_col_ = data_test[
- ['videoid', 'weighted_retrn_log', 'weighted_retrn', 'todyviewcount', 'day3viewcount', 'day1viewcount',
- 'day3returncount', 'day1returncount']]
- merge_ = pd.merge(compare_col_, sub_df_, on=['videoid'])
- # In[104]:
- # merge_.shape
- merge_.to_csv('/root/ROVtrain/readonlinetable/video_metric_score/' + now_day[-4:] + '/' + 'video_metric' + '.csv',
- index=False)
- feature_importance_df.to_csv(
- '/root/ROVtrain/readonlinetable/video_metric_score/' + now_day[-4:] + '/' + 'feature_importance' + '.csv',
- index=False)
- print('end')
|