|
@@ -0,0 +1,993 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# coding: utf-8
|
|
|
+
|
|
|
+# In[2]:
|
|
|
+
|
|
|
+
|
|
|
+import warnings
|
|
|
+
|
|
|
+warnings.filterwarnings("ignore")
|
|
|
+from sklearn.metrics import r2_score
|
|
|
+import os
|
|
|
+import pandas as pd
|
|
|
+import gc
|
|
|
+import math
|
|
|
+import numpy as np
|
|
|
+import time
|
|
|
+from sklearn.linear_model import SGDRegressor
|
|
|
+from sklearn.linear_model import SGDClassifier
|
|
|
+import lightgbm as lgb
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import StratifiedKFold
|
|
|
+from sklearn import metrics
|
|
|
+import pickle
|
|
|
+from sklearn.metrics import mean_squared_error
|
|
|
+import seaborn as sns
|
|
|
+import matplotlib.pylab as plt
|
|
|
+from odps import ODPS
|
|
|
+from odps.df import DataFrame as odpsdf
|
|
|
+from datetime import datetime as dt
|
|
|
+import datetime
|
|
|
+
|
|
|
+
|
|
|
+# In[3]:
|
|
|
+
|
|
|
+
|
|
|
+now_date = datetime.date.today()
|
|
|
+# day = datetime.datetime.strftime(now_date, '%Y%m%d')
|
|
|
+diff_1 = datetime.timedelta(days=1)
|
|
|
+diff_5 = datetime.timedelta(days=7)
|
|
|
+input_dt = now_date - diff_1
|
|
|
+input_day = datetime.datetime.strftime(input_dt, '%Y%m%d')
|
|
|
+now_day = datetime.datetime.strftime(now_date, '%Y%m%d')
|
|
|
+train_dt = now_date - diff_5
|
|
|
+train_day = datetime.datetime.strftime(train_dt, '%Y%m%d')
|
|
|
+
|
|
|
+
|
|
|
+# In[4]:
|
|
|
+
|
|
|
+
|
|
|
+add_feature = [
|
|
|
+ 'all_return_day1_return_count', # -- 1/3/7/14日内总回流 #12
|
|
|
+ 'all_return_day3_return_count',
|
|
|
+ 'all_return_day7_return_count',
|
|
|
+ 'all_return_day14_return_count',
|
|
|
+
|
|
|
+ 'three_return_day1_return_count', # -- 1/3/7/14日内前三层回流 #14
|
|
|
+ 'three_return_day3_return_count',
|
|
|
+ 'three_return_day7_return_count',
|
|
|
+ 'three_return_day14_return_count',
|
|
|
+
|
|
|
+ 'four_up_return_day1_return_count', # -- 1/3/7/14日内四+层回流 #15
|
|
|
+ 'four_up_return_day3_return_count',
|
|
|
+ 'four_up_return_day7_return_count',
|
|
|
+ 'four_up_return_day14_return_count',
|
|
|
+
|
|
|
+ 'one_return_day1_return_count', # -- 1/3/7/14日内一层回流 #13
|
|
|
+ 'one_return_day3_return_count',
|
|
|
+ 'one_return_day7_return_count',
|
|
|
+ 'one_return_day14_return_count',
|
|
|
+
|
|
|
+ 'four_up_return_div_three_return_day1', # -- 1/3/7/14日内四+层回流/前三层回流 #23
|
|
|
+ 'four_up_return_div_three_return_day3',
|
|
|
+ 'four_up_return_div_three_return_day7',
|
|
|
+ 'four_up_return_div_three_return_day14',
|
|
|
+
|
|
|
+ 'all_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内回流 #8
|
|
|
+ 'all_return_day3_view_day3_return_count',
|
|
|
+ 'all_return_day7_view_day7_return_count',
|
|
|
+ 'all_return_day14_view_day14_return_count',
|
|
|
+
|
|
|
+ 'three_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内前三层回流 #10
|
|
|
+ 'three_return_day3_view_day3_return_count',
|
|
|
+ 'three_return_day7_view_day7_return_count',
|
|
|
+ 'three_return_day14_view_day14_return_count',
|
|
|
+
|
|
|
+ 'four_up_return_day1_view_day1_return_count', # -- 1/3/7/14日内曝光在1/3/7/14日内四+层回流 # 11
|
|
|
+ 'four_up_return_day3_view_day3_return_count',
|
|
|
+ 'four_up_return_day7_view_day7_return_count',
|
|
|
+ 'four_up_return_day14_view_day14_return_count',
|
|
|
+
|
|
|
+ 'one_return_day1_view_day1_return_count', ##-- 1/3/7/14日内曝光在1/3/7/14日内一层回流 #9
|
|
|
+ 'one_return_day3_view_day3_return_count',
|
|
|
+ 'one_return_day7_view_day7_return_count',
|
|
|
+ 'one_return_day14_view_day14_return_count',
|
|
|
+
|
|
|
+ 'all_return_day1_on_day1_return_count', # 前day1+1 / day1+3/day1+7/day1+14 到前 day1+1日内曝光在 day1的总回流 #16
|
|
|
+ 'all_return_day3_on_day1_return_count',
|
|
|
+ 'all_return_day7_on_day1_return_count',
|
|
|
+ 'all_return_day14_on_day1_return_count',
|
|
|
+
|
|
|
+ 'four_up_return_day1_view_day1_return_div_three_d1', # -- 1/3/7/14日内曝光在1/3/7/14日内四+层回流/前三层回流 #22
|
|
|
+ 'four_up_return_day3_view_day3_return_div_three_d3',
|
|
|
+ 'four_up_return_day7_view_day7_return_div_three_d7',
|
|
|
+ 'four_up_return_day14_view_day14_return_div_three_d14',
|
|
|
+
|
|
|
+ 'day1ctr', # -- 1/3/7/14/30/60日内播放/曝光 #17
|
|
|
+ 'day3ctr',
|
|
|
+ 'day7ctr',
|
|
|
+ 'day14ctr',
|
|
|
+ 'day30ctr',
|
|
|
+ 'day60ctr',
|
|
|
+
|
|
|
+ 'day1sov', # -- 1/3/7/14/30/60日内分享/曝光 #18
|
|
|
+ 'day3sov',
|
|
|
+ 'day7sov',
|
|
|
+ 'day14sov',
|
|
|
+ 'day30sov',
|
|
|
+ 'day60sov',
|
|
|
+
|
|
|
+ 'day1rov', # -- 1/3/7/14日内曝光的回流/曝光 #19
|
|
|
+ 'day3rov',
|
|
|
+ 'day7rov',
|
|
|
+ 'day14rov',
|
|
|
+
|
|
|
+ 'day1soc', # -- 1/3/7/14/30/60日内分享/播放 #20
|
|
|
+ 'day3soc',
|
|
|
+ 'day7soc',
|
|
|
+ 'day14soc',
|
|
|
+ 'day30soc',
|
|
|
+ 'day60soc',
|
|
|
+
|
|
|
+ 'day1roc', # -- 1/3/7/14日内曝光的回流/播放 #21
|
|
|
+ 'day3roc',
|
|
|
+ 'day7roc',
|
|
|
+ 'day14roc',
|
|
|
+
|
|
|
+ 'oneday_day1rov', # -- 1/3/7/14日内曝光在今日的回流/ 1/3/7/14日内曝光 #24
|
|
|
+ 'oneday_day3rov',
|
|
|
+ 'oneday_day7rov',
|
|
|
+ 'oneday_day14rov',
|
|
|
+ 'futre7dayreturn'
|
|
|
+
|
|
|
+ ,'todyviewcount_rank'
|
|
|
+ ,'day1viewcount_rank'
|
|
|
+]
|
|
|
+
|
|
|
+featurename = [
|
|
|
+ 'dt',
|
|
|
+ 'videoid',
|
|
|
+ 'day1playcount',
|
|
|
+ 'day1returncount',
|
|
|
+ 'day1sharecount',
|
|
|
+ 'day1viewcount',
|
|
|
+ 'day14playcount',
|
|
|
+ 'day14returncount',
|
|
|
+ 'day14sharecount',
|
|
|
+ 'day14viewcount',
|
|
|
+ 'day30playcount',
|
|
|
+ 'day30returncount',
|
|
|
+ 'day30sharecount',
|
|
|
+ 'day30viewcount',
|
|
|
+ 'day3playcount',
|
|
|
+ 'day3returncount',
|
|
|
+ 'day3sharecount',
|
|
|
+ 'day3viewcount',
|
|
|
+ 'day60playcount',
|
|
|
+ 'day60returncount',
|
|
|
+ 'day60sharecount',
|
|
|
+ 'day60viewcount',
|
|
|
+ 'day7playcount',
|
|
|
+ 'day7returncount',
|
|
|
+ 'day7sharecount',
|
|
|
+ 'day7viewcount',
|
|
|
+ 'videocategory11',
|
|
|
+ 'videocategory12',
|
|
|
+ 'videocategory45',
|
|
|
+ 'videocategory49',
|
|
|
+ 'videocategory1',
|
|
|
+ 'videocategory2',
|
|
|
+ 'videocategory3',
|
|
|
+ 'videocategory4',
|
|
|
+ 'videocategory5',
|
|
|
+ 'videocategory6',
|
|
|
+ 'videocategory7',
|
|
|
+ 'videocategory8',
|
|
|
+ 'videocategory9',
|
|
|
+ 'videocategory85',
|
|
|
+ 'videocategory10',
|
|
|
+ 'videocategory555',
|
|
|
+ 'usercategory1',
|
|
|
+ 'usercategory2',
|
|
|
+ 'usercategory3',
|
|
|
+ 'usercategory4',
|
|
|
+ 'usercategory5',
|
|
|
+ 'usercategory6',
|
|
|
+ 'usercategory7',
|
|
|
+ 'usercategory8',
|
|
|
+ 'usercategory9',
|
|
|
+ 'usercategory10',
|
|
|
+ 'usercategory11',
|
|
|
+ 'usercategory12',
|
|
|
+ 'usercategory45',
|
|
|
+ 'usercategory49',
|
|
|
+ 'usercategory85',
|
|
|
+ 'usercategory555',
|
|
|
+ 'todyviewcount',
|
|
|
+ 'day5returncount_1_stage',
|
|
|
+ 'day5returncount_2_stage',
|
|
|
+ 'day5returncount_3_stage',
|
|
|
+ 'day5returncount_4_stage',
|
|
|
+ 'stage_one_retrn',
|
|
|
+ 'stage_two_retrn',
|
|
|
+ 'stage_three_retrn',
|
|
|
+ 'stage_four_retrn']
|
|
|
+words = ['videotags','words_without_tags']
|
|
|
+featurename = featurename + add_feature + words
|
|
|
+
|
|
|
+print(len(featurename))
|
|
|
+
|
|
|
+
|
|
|
+# In[5]:
|
|
|
+
|
|
|
+
|
|
|
+def getRovfeaturetable(dt):
|
|
|
+ odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
|
|
|
+ endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
|
|
|
+ read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
|
|
|
+
|
|
|
+ featureArray = []
|
|
|
+ for record in odps.read_table('rov_feature_add_v1', partition='dt=%s' % dt):
|
|
|
+ valueFeature = {}
|
|
|
+ for i in featurename:
|
|
|
+ if i == 'dt':
|
|
|
+ valueFeature[i] = dt
|
|
|
+ else:
|
|
|
+ valueFeature[i] = record[i]
|
|
|
+ featureArray.append(valueFeature)
|
|
|
+ featureArray = pd.DataFrame(featureArray)
|
|
|
+ print(dt, 'feature table finish')
|
|
|
+ return featureArray
|
|
|
+
|
|
|
+
|
|
|
+def getRovtestable(dt):
|
|
|
+ odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
|
|
|
+ endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
|
|
|
+ read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
|
|
|
+
|
|
|
+ featureArray = []
|
|
|
+ for record in odps.read_table('rov_predict_table_add_v1', partition='dt=%s' % dt):
|
|
|
+ valueFeature = {}
|
|
|
+ for i in featurename:
|
|
|
+ if i == 'dt':
|
|
|
+ valueFeature[i] = dt
|
|
|
+ else:
|
|
|
+ valueFeature[i] = record[i]
|
|
|
+ featureArray.append(valueFeature)
|
|
|
+ featureArray = pd.DataFrame(featureArray)
|
|
|
+ print(dt, 'test table finish')
|
|
|
+ return featureArray
|
|
|
+
|
|
|
+
|
|
|
+def getestingdata(date):
|
|
|
+ new_date = dt.strptime(date, '%Y%m%d')
|
|
|
+ datelist = []
|
|
|
+ testlist = []
|
|
|
+ for i in range(0, 1):
|
|
|
+ delta = datetime.timedelta(days=i)
|
|
|
+ tar_dt = new_date - delta
|
|
|
+ datelist.append(tar_dt.strftime("%Y%m%d"))
|
|
|
+ print(datelist)
|
|
|
+ for tm in datelist:
|
|
|
+ testlist.append(getRovtestable(tm))
|
|
|
+ testdata = pd.concat(testlist)
|
|
|
+ testdata.reset_index(inplace=True)
|
|
|
+ testdata = testdata.drop(axis=1, columns='index')
|
|
|
+ return testdata
|
|
|
+
|
|
|
+
|
|
|
+def getrainingdata(date):
|
|
|
+ new_date = dt.strptime(date, '%Y%m%d')
|
|
|
+ datelist = []
|
|
|
+ trainlist = []
|
|
|
+ for i in range(0, 30):
|
|
|
+ delta = datetime.timedelta(days=i)
|
|
|
+ tar_dt = new_date - delta
|
|
|
+ datelist.append(tar_dt.strftime("%Y%m%d"))
|
|
|
+ print(datelist)
|
|
|
+ for tm in datelist:
|
|
|
+ trainlist.append(getRovfeaturetable(tm))
|
|
|
+ traindata = pd.concat(trainlist)
|
|
|
+ traindata.reset_index(inplace=True)
|
|
|
+ traindata = traindata.drop(axis=1, columns='index')
|
|
|
+ return traindata
|
|
|
+
|
|
|
+
|
|
|
+traindata = getrainingdata(train_day)
|
|
|
+data_test_ori_rk = getestingdata(input_day)
|
|
|
+
|
|
|
+
|
|
|
+# In[6]:
|
|
|
+
|
|
|
+
|
|
|
+def select_recent_video(df):
|
|
|
+ """对每一个视频添加row number,按照日期排序,最后选取最近的那一天"""
|
|
|
+ df['dt'] = df['dt'].astype(int)
|
|
|
+ df['rk'] = df['dt'].groupby(df['videoid']).rank(ascending=0, method='first')
|
|
|
+ df = df[df['rk'] == 1]
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
+data_test_ori = select_recent_video(data_test_ori_rk)
|
|
|
+data_test_ori.loc[data_test_ori['dt'] != int(input_day), 'futre7dayreturn'] = 0
|
|
|
+data_test_ori = data_test_ori.drop(axis=1, columns='rk')
|
|
|
+
|
|
|
+
|
|
|
+# In[7]:
|
|
|
+
|
|
|
+
|
|
|
+## 去重复,保证每个视频 每一天 有切仅有一条数据。
|
|
|
+traindata.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
|
|
|
+data_test_ori.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
|
|
|
+
|
|
|
+
|
|
|
+# In[8]:
|
|
|
+
|
|
|
+
|
|
|
+def basic_cal(df):
|
|
|
+
|
|
|
+# df['weighted_retrn'] = df['stage_one_retrn'].astype('int')*0.4 + \
|
|
|
+# df['stage_two_retrn'].astype('int')*0.3 + \
|
|
|
+# df['stage_three_retrn'].astype('int')*0.3
|
|
|
+
|
|
|
+
|
|
|
+ df['weighted_retrn'] = df['futre7dayreturn'].astype('int')
|
|
|
+# df['weighted_retrn'] = df['futr5returncount'].astype('int')
|
|
|
+ # day1viewcount 如果是零,就返回 rov,rov_log 变为零
|
|
|
+ df['weighted_retrn_log'] = df.apply(lambda x: np.log(x['weighted_retrn'] + 1),axis=1)
|
|
|
+# df['rov'] = df.apply(lambda x: x['weighted_retrn'] / x['todyviewcount'] \
|
|
|
+# if x['todyviewcount']!=0 else 0,axis=1)
|
|
|
+
|
|
|
+# df['rov_log'] = df.apply(lambda x: np.log(x['rov'] + 1),axis=1)
|
|
|
+
|
|
|
+# thresh = np.percentile(df[df['weighted_retrn']>0]['weighted_retrn'],50)
|
|
|
+ ## 设置回流大于thresh, label就是1, 没有分享或有分享但是回流数是零的标为0
|
|
|
+ df['return_back'] = df.apply(lambda x:1 if x['weighted_retrn']> 0 else 0,axis=1)
|
|
|
+
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
+data_train = basic_cal(traindata)
|
|
|
+data_test = basic_cal(data_test_ori)
|
|
|
+
|
|
|
+
|
|
|
+# In[9]:
|
|
|
+
|
|
|
+
|
|
|
+def today_view_category(df):
|
|
|
+### 对当天的曝光量分三个级别,未来三天的曝光量分3个级别,添加Category feaure
|
|
|
+ data_test1_view1 = df.loc[data_test['day1viewcount_rank'] > 10000]['day1viewcount'].mean()
|
|
|
+ data_test1_view2 = df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000)]['day1viewcount'].mean()
|
|
|
+ data_test1_view3 = df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000)]['day1viewcount'].mean()
|
|
|
+ data_test1_view4 = df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000)]['day1viewcount'].mean()
|
|
|
+ data_test1_view5 = df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300)]['day1viewcount'].mean()
|
|
|
+ data_test1_view6 = df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100)]['day1viewcount'].mean()
|
|
|
+ data_test1_view7 = df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30)]['day1viewcount'].mean()
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ df.loc[df['day1viewcount_rank'] > 10000, 'todyviewcount'] = data_test1_view3
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000), 'todyviewcount'] = data_test1_view3
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000), 'todyviewcount'] = data_test1_view4
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000), 'todyviewcount'] = data_test1_view5
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300), 'todyviewcount'] = data_test1_view6
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100), 'todyviewcount'] = data_test1_view7
|
|
|
+ df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30), 'todyviewcount'] = data_test1_view7
|
|
|
+
|
|
|
+
|
|
|
+ return df
|
|
|
+data_test = today_view_category(data_test)
|
|
|
+
|
|
|
+
|
|
|
+# In[10]:
|
|
|
+
|
|
|
+
|
|
|
+# 首页特征
|
|
|
+root_page_1day = ['day1playcount', 'day1returncount', 'day1sharecount', 'day1viewcount']
|
|
|
+
|
|
|
+root_page_3day = ['day3playcount', 'day3returncount', 'day3sharecount', 'day3viewcount']
|
|
|
+
|
|
|
+root_page_7day = ['day7playcount', 'day7returncount', 'day7sharecount', 'day7viewcount']
|
|
|
+
|
|
|
+root_page_14day = ['day14playcount', 'day14returncount', 'day14sharecount', 'day14viewcount']
|
|
|
+
|
|
|
+root_page_30day = ['day30playcount', 'day30returncount', 'day30sharecount', 'day30viewcount']
|
|
|
+
|
|
|
+root_page_60day = ['day60playcount', 'day60returncount', 'day60sharecount', 'day60viewcount']
|
|
|
+
|
|
|
+return_5day = ['day5returncount_1_stage', 'day5returncount_2_stage', 'day5returncount_3_stage',
|
|
|
+ 'day5returncount_4_stage']
|
|
|
+cate_feat = ['videocategory1', 'videocategory10', 'videocategory11', 'videocategory12',
|
|
|
+ 'videocategory2', 'videocategory3', 'videocategory4', 'videocategory45',
|
|
|
+ 'videocategory49', 'videocategory5', 'videocategory6',
|
|
|
+ 'videocategory7', 'videocategory8', 'videocategory85', 'videocategory9', 'videocategory555']
|
|
|
+one_hot_feature = ['videotags','words_without_tags','videoid']
|
|
|
+# cate_view_feat = [ 'todyview_low','todyview_median','todyview_high']
|
|
|
+
|
|
|
+
|
|
|
+# cate_view_feat = ['todyview_1', 'todyview_2', 'todyview_3', 'todyview_4', 'todyview_5', 'todyview_6', 'todyview_7',
|
|
|
+# 'todyview_8']
|
|
|
+
|
|
|
+
|
|
|
+# In[11]:
|
|
|
+
|
|
|
+
|
|
|
+def cal_feature(df):
|
|
|
+ start = time.time()
|
|
|
+ for i in range(len(root_page_1day)):
|
|
|
+
|
|
|
+
|
|
|
+ newfeat_div = root_page_60day[i] + '_divide_' + root_page_30day[i]
|
|
|
+# df[newfeat_div] = df.apply(lambda s: s[root_page_30day[i]] / s[root_page_60day[i]]\
|
|
|
+# if s[root_page_60day[i]] != 0 else 0, axis=1)
|
|
|
+ df[newfeat_div] = df[root_page_30day[i]]/ df[root_page_60day[i]]
|
|
|
+
|
|
|
+ newfeat_diff = root_page_60day[i] + '_dif_' + root_page_30day[i]
|
|
|
+# df[newfeat_diff] = df.apply(lambda s: s[root_page_60day[i]]-s[root_page_30day[i]],\
|
|
|
+# axis=1)
|
|
|
+ df[newfeat_diff] = df[root_page_60day[i]] - df[root_page_30day[i]]
|
|
|
+
|
|
|
+ end = time.time()
|
|
|
+ running_time = end-start
|
|
|
+ print('stage 1: time cost : %.5f sec' %running_time)
|
|
|
+
|
|
|
+
|
|
|
+ start = time.time()
|
|
|
+ for i in range(len(root_page_1day)):
|
|
|
+ newfeat_div = root_page_30day[i] + '_divide_' + root_page_7day[i]
|
|
|
+# df[newfeat_div] = df.apply(lambda s: s[root_page_7day[i]] / s[root_page_30day[i]]\
|
|
|
+# if s[root_page_30day[i]] != 0 else 0, axis=1)
|
|
|
+
|
|
|
+ df[newfeat_div] = df[root_page_7day[i]]/df[root_page_30day[i]]
|
|
|
+ newfeat_diff = root_page_30day[i] + '_dif_' + root_page_7day[i]
|
|
|
+# df[newfeat_diff] = df.apply(lambda s: s[root_page_7day[i]] - s[root_page_3day[i]],\
|
|
|
+# axis=1)
|
|
|
+ df[newfeat_diff] = df[root_page_7day[i]] - df[root_page_3day[i]]
|
|
|
+ end = time.time()
|
|
|
+ running_time = end-start
|
|
|
+ print('stage 2: time cost : %.5f sec' %running_time)
|
|
|
+
|
|
|
+
|
|
|
+ start = time.time()
|
|
|
+ for i in range(len(root_page_1day)):
|
|
|
+ newfeat_div = root_page_7day[i] + '_divide_' + root_page_3day[i]
|
|
|
+# df[newfeat_div] = df.apply(lambda s: s[root_page_3day[i]] / s[root_page_7day[i]]\
|
|
|
+# if s[root_page_7day[i]] != 0 else 0, axis=1)
|
|
|
+ df[newfeat_div] = df[root_page_3day[i]]/df[root_page_7day[i]]
|
|
|
+
|
|
|
+ newfeat_diff = root_page_7day[i] + '_dif_' + root_page_3day[i]
|
|
|
+# df[newfeat_diff] = df.apply(lambda s: s[root_page_7day[i]] - s[root_page_3day[i]],\
|
|
|
+# axis=1)
|
|
|
+ df[newfeat_diff] = df[root_page_7day[i]] - df[root_page_3day[i]]
|
|
|
+ end = time.time()
|
|
|
+ running_time = end-start
|
|
|
+ print('stage 3: time cost : %.5f sec' %running_time)
|
|
|
+
|
|
|
+ start = time.time()
|
|
|
+ for i in range(len(root_page_1day)):
|
|
|
+ newfeat_div = root_page_3day[i] + '_divide_' + root_page_1day[i]
|
|
|
+# df[newfeat_div] = df.apply(lambda s: s[root_page_1day[i]] / s[root_page_3day[i]]\
|
|
|
+# if s[root_page_3day[i]] != 0 else 0, axis=1)
|
|
|
+ df[newfeat_div] = df[root_page_1day[i]] / df[root_page_3day[i]]
|
|
|
+ newfeat_diff = root_page_3day[i] + '_dif_' + root_page_1day[i]
|
|
|
+# df[newfeat_diff] = df.apply(lambda s: s[root_page_3day[i]] - s[root_page_1day[i]],\
|
|
|
+# axis=1)
|
|
|
+ df[newfeat_diff] = df[root_page_3day[i]] - df[root_page_1day[i]]
|
|
|
+ end = time.time()
|
|
|
+ running_time = end-start
|
|
|
+ print('stage 4: time cost : %.5f sec' %running_time)
|
|
|
+ df = df.replace([np.inf, -np.inf], np.nan)
|
|
|
+ df = df.fillna(0)
|
|
|
+
|
|
|
+
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
+# In[12]:
|
|
|
+
|
|
|
+
|
|
|
+data_train = data_train.fillna(0)
|
|
|
+data_test = data_test.fillna(0)
|
|
|
+
|
|
|
+
|
|
|
+data_train = cal_feature(data_train)
|
|
|
+data_test = cal_feature(data_test)
|
|
|
+
|
|
|
+
|
|
|
+# In[13]:
|
|
|
+
|
|
|
+
|
|
|
+print('data_train shape:', data_train.shape)
|
|
|
+print('data_test shape:', data_test.shape)
|
|
|
+
|
|
|
+
|
|
|
+# In[14]:
|
|
|
+
|
|
|
+
|
|
|
+features = ['day1playcount', 'day1returncount', 'day1sharecount', 'day1viewcount', 'day30playcount', 'day30returncount',
|
|
|
+ 'day30sharecount', 'day30viewcount', 'day3playcount', 'day3returncount', 'day3sharecount', 'day3viewcount',
|
|
|
+ 'day60playcount', 'day60returncount', 'day60sharecount', 'day60viewcount', 'day7playcount', 'day7returncount',
|
|
|
+ 'day7sharecount', 'day7viewcount', 'usercategory1', 'usercategory2', 'usercategory3', 'usercategory4',
|
|
|
+ 'usercategory5', 'usercategory6', 'usercategory7', 'usercategory8', 'usercategory9', 'usercategory10',
|
|
|
+ 'usercategory11', 'usercategory12', 'usercategory45', 'usercategory49', 'usercategory85','usercategory555',
|
|
|
+ 'todyviewcount',
|
|
|
+ 'day5returncount_1_stage', 'day5returncount_2_stage', 'day5returncount_3_stage', 'day5returncount_4_stage',
|
|
|
+ 'stage_one_retrn', 'stage_two_retrn', 'stage_three_retrn', 'stage_four_retrn', 'all_return_day1_return_count',
|
|
|
+ 'all_return_day3_return_count', 'all_return_day7_return_count', 'all_return_day14_return_count',
|
|
|
+ 'three_return_day1_return_count', 'three_return_day3_return_count', 'three_return_day7_return_count',
|
|
|
+ 'three_return_day14_return_count', 'four_up_return_day1_return_count', 'four_up_return_day3_return_count',
|
|
|
+ 'four_up_return_day7_return_count', 'four_up_return_day14_return_count', 'one_return_day1_return_count',
|
|
|
+ 'one_return_day3_return_count', 'one_return_day7_return_count', 'one_return_day14_return_count',
|
|
|
+ 'four_up_return_div_three_return_day1', 'four_up_return_div_three_return_day3',
|
|
|
+ 'four_up_return_div_three_return_day7', 'four_up_return_div_three_return_day14',
|
|
|
+ 'all_return_day1_view_day1_return_count', 'all_return_day3_view_day3_return_count',
|
|
|
+ 'all_return_day7_view_day7_return_count', 'all_return_day14_view_day14_return_count',
|
|
|
+ 'three_return_day1_view_day1_return_count', 'three_return_day3_view_day3_return_count',
|
|
|
+ 'three_return_day7_view_day7_return_count', 'three_return_day14_view_day14_return_count',
|
|
|
+ 'four_up_return_day1_view_day1_return_count', 'four_up_return_day3_view_day3_return_count',
|
|
|
+ 'four_up_return_day7_view_day7_return_count', 'four_up_return_day14_view_day14_return_count',
|
|
|
+ 'one_return_day1_view_day1_return_count', 'one_return_day3_view_day3_return_count',
|
|
|
+ 'one_return_day7_view_day7_return_count', 'one_return_day14_view_day14_return_count',
|
|
|
+ 'all_return_day1_on_day1_return_count', 'all_return_day3_on_day1_return_count',
|
|
|
+ 'all_return_day7_on_day1_return_count', 'all_return_day14_on_day1_return_count',
|
|
|
+ 'four_up_return_day1_view_day1_return_div_three_d1', 'four_up_return_day3_view_day3_return_div_three_d3',
|
|
|
+ 'four_up_return_day7_view_day7_return_div_three_d7', 'four_up_return_day14_view_day14_return_div_three_d14',
|
|
|
+ 'day1ctr', 'day3ctr', 'day7ctr', 'day14ctr', 'day30ctr', 'day60ctr', 'day1sov', 'day3sov', 'day7sov',
|
|
|
+ 'day14sov', 'day30sov', 'day60sov', 'day1rov', 'day3rov', 'day7rov', 'day14rov', 'day1soc', 'day3soc',
|
|
|
+ 'day7soc', 'day14soc', 'day30soc', 'day60soc', 'day1roc', 'day3roc', 'day7roc', 'day14roc', 'oneday_day1rov',
|
|
|
+ 'oneday_day3rov', 'oneday_day7rov', 'oneday_day14rov',
|
|
|
+ 'day60playcount_divide_day30playcount', 'day60playcount_dif_day30playcount',
|
|
|
+ 'day60returncount_divide_day30returncount', 'day60returncount_dif_day30returncount',
|
|
|
+ 'day60sharecount_divide_day30sharecount', 'day60sharecount_dif_day30sharecount',
|
|
|
+ 'day60viewcount_divide_day30viewcount', 'day60viewcount_dif_day30viewcount',
|
|
|
+ 'day30playcount_divide_day7playcount', 'day30playcount_dif_day7playcount',
|
|
|
+ 'day30returncount_divide_day7returncount', 'day30returncount_dif_day7returncount',
|
|
|
+ 'day30sharecount_divide_day7sharecount', 'day30sharecount_dif_day7sharecount',
|
|
|
+ 'day30viewcount_divide_day7viewcount', 'day30viewcount_dif_day7viewcount',
|
|
|
+ 'day7playcount_divide_day3playcount', 'day7playcount_dif_day3playcount',
|
|
|
+ 'day7returncount_divide_day3returncount', 'day7returncount_dif_day3returncount',
|
|
|
+ 'day7sharecount_divide_day3sharecount', 'day7sharecount_dif_day3sharecount',
|
|
|
+ 'day7viewcount_divide_day3viewcount', 'day7viewcount_dif_day3viewcount', 'day3playcount_divide_day1playcount',
|
|
|
+ 'day3playcount_dif_day1playcount', 'day3returncount_divide_day1returncount',
|
|
|
+ 'day3returncount_dif_day1returncount', 'day3sharecount_divide_day1sharecount',
|
|
|
+ 'day3sharecount_dif_day1sharecount', 'day3viewcount_divide_day1viewcount',
|
|
|
+ 'day3viewcount_dif_day1viewcount']
|
|
|
+
|
|
|
+
|
|
|
+# In[15]:
|
|
|
+
|
|
|
+
|
|
|
+def dataprepare(df_pre):
|
|
|
+ # 直接将特征送进去,不加交叉特征。
|
|
|
+ # 是否对数据补零
|
|
|
+ df_pre = df_pre.fillna(0)
|
|
|
+ df_new_feature = df_pre[features]
|
|
|
+# df_onehot_feature = df_pre[one_hot_feature]
|
|
|
+# df_new_feature = pd.concat([df_pre.loc[:, 'all_return_day14_on_day1_return_count':'day7viewcount'], \
|
|
|
+# df_pre.loc[:, 'four_up_return_day14_return_count': \
|
|
|
+# 'four_up_return_div_three_return_day7'], \
|
|
|
+# df_pre.loc[:, 'one_return_day14_return_count':'oneday_day7rov'],
|
|
|
+# df_pre.loc[:,
|
|
|
+# 'three_return_day14_return_count':'three_return_day7_view_day7_return_count'],
|
|
|
+# df_pre.loc[:, 'usercategory1':'usercategory9'], df_pre.loc[:,
|
|
|
+# 'day60playcount_divide_day30playcount':'day3viewcount_dif_day1viewcount']],
|
|
|
+# axis=1)
|
|
|
+
|
|
|
+ # df_new_feature = pd.concat([df_pre.loc[:,'day1playcount':'day7viewcount'],\
|
|
|
+ # df_pre.loc[:,'day60playcount_divide_day30playcount':\
|
|
|
+ # 'day5returncount_4_stage_dif_day5returncount_3_stage'], \
|
|
|
+ # df_pre.loc[:,'usercategory1':'usercategory9']], axis=1)
|
|
|
+
|
|
|
+ df_target = df_pre['weighted_retrn_log']
|
|
|
+
|
|
|
+ df_new_feature = pd.concat([df_new_feature, df_pre[cate_feat],df_pre[one_hot_feature]], axis=1)
|
|
|
+
|
|
|
+ return df_new_feature, df_target
|
|
|
+
|
|
|
+
|
|
|
+# In[16]:
|
|
|
+
|
|
|
+
|
|
|
+recall_video = pd.read_csv('/root/ROVtrain/readonlinetable/result/recall_' + input_day[-4:] + '.csv')
|
|
|
+
|
|
|
+
|
|
|
+# In[17]:
|
|
|
+
|
|
|
+
|
|
|
+ten_percent_thresh = recall_video['score'].min()
|
|
|
+if ten_percent_thresh < 0.4:
|
|
|
+ recall_video_stage_one = recall_video[recall_video['score'] > 0.4]
|
|
|
+
|
|
|
+else:
|
|
|
+ recall_video_stage_one = recall_video[recall_video['score'] > ten_percent_thresh]
|
|
|
+
|
|
|
+
|
|
|
+# In[18]:
|
|
|
+
|
|
|
+
|
|
|
+data_test['videoid'] = data_test['videoid'].astype('int')
|
|
|
+
|
|
|
+data_train = data_train[data_train['weighted_retrn'] > 0]
|
|
|
+print(data_train.shape, 'train shape')
|
|
|
+data_test = pd.merge(data_test, recall_video_stage_one, on=['videoid'], how='inner')
|
|
|
+print('score>0.5 video_count:', data_test.shape)
|
|
|
+
|
|
|
+
|
|
|
+# In[19]:
|
|
|
+
|
|
|
+
|
|
|
+df_new_feature,df_target= dataprepare(data_train)
|
|
|
+df_new_feature_test, df_target_test = dataprepare(data_test)
|
|
|
+
|
|
|
+
|
|
|
+# In[20]:
|
|
|
+
|
|
|
+
|
|
|
+#数值
|
|
|
+from scipy import sparse
|
|
|
+
|
|
|
+df_new_feature_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature).loc[:,'day1playcount':'videocategory555']))
|
|
|
+df_new_feature_test_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature_test).loc[:,'day1playcount':'videocategory555']))
|
|
|
+
|
|
|
+print('value feature generate successfully')
|
|
|
+
|
|
|
+
|
|
|
+# In[21]:
|
|
|
+
|
|
|
+
|
|
|
+#videoid
|
|
|
+train_videoid = pd.DataFrame(df_new_feature).loc[:,'videoid']
|
|
|
+test_videoid = pd.DataFrame(df_new_feature_test).loc[:,'videoid']
|
|
|
+
|
|
|
+train_videoid_list = pd.DataFrame(df_new_feature).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videoid']),1).tolist()
|
|
|
+test_videoid_list = pd.DataFrame(df_new_feature_test).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videoid']),1).tolist()
|
|
|
+
|
|
|
+
|
|
|
+allvideo_raw = list(set(np.array(pd.concat([train_videoid,test_videoid])).tolist()))
|
|
|
+allvideo = np.array(allvideo_raw).reshape(len(allvideo_raw),1).tolist()
|
|
|
+from sklearn.preprocessing import MultiLabelBinarizer
|
|
|
+
|
|
|
+mlb_model_videoid = MultiLabelBinarizer(sparse_output=True).fit(allvideo)
|
|
|
+train_videoid = mlb_model_videoid.transform(train_videoid_list)
|
|
|
+test_videoid = mlb_model_videoid.transform(test_videoid_list)
|
|
|
+
|
|
|
+print('videoid feature generate successfully')
|
|
|
+
|
|
|
+
|
|
|
+# In[23]:
|
|
|
+
|
|
|
+
|
|
|
+len(mlb_model_videoid.classes_)
|
|
|
+
|
|
|
+
|
|
|
+# In[24]:
|
|
|
+
|
|
|
+
|
|
|
+def tag_preprocessing(filename):
|
|
|
+ #读取tag分词结果
|
|
|
+ tag_txt = open("/root/ROVtrain/tfidfCompution/"+ filename +".txt","r") #设置文件对象
|
|
|
+ ftextlist = tag_txt.readlines() # 同上
|
|
|
+ tag_txt.close() #关闭文件
|
|
|
+
|
|
|
+
|
|
|
+ #转为corpus
|
|
|
+ tagList = str(ftextlist).replace('[','').replace(']','').replace("'","").replace("'","").split(',')
|
|
|
+ tag = np.array(tagList).reshape(len(tagList),1).tolist()
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ #将词特征转为list形式
|
|
|
+ train_tag_feature = pd.DataFrame(df_new_feature).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videotags']),1).tolist()
|
|
|
+ test_tag_feature = pd.DataFrame(df_new_feature_test).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videotags']),1).tolist()
|
|
|
+
|
|
|
+ #稀疏特征
|
|
|
+ mlb_model_tag = MultiLabelBinarizer(sparse_output=True).fit(tag)
|
|
|
+ train_tag = mlb_model_tag.transform(train_tag_feature)
|
|
|
+ test_tag = mlb_model_tag.transform(test_tag_feature)
|
|
|
+
|
|
|
+ return mlb_model_tag.classes_,train_tag,test_tag
|
|
|
+
|
|
|
+
|
|
|
+# In[25]:
|
|
|
+
|
|
|
+
|
|
|
+#读取tf,idf
|
|
|
+def get_tag_tfidf(dt, tfidf_table_name):
|
|
|
+ odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'videoods',
|
|
|
+ endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
|
|
|
+ read_timeout=500000, pool_maxsize=1000, pool_connections=1000)
|
|
|
+ tag_dict = {}
|
|
|
+ for record in odps.read_table(tfidf_table_name, partition='dt=%s' % dt):
|
|
|
+ tag_dict[record[0]] = record[1]
|
|
|
+ return tag_dict
|
|
|
+
|
|
|
+
|
|
|
+# In[26]:
|
|
|
+
|
|
|
+
|
|
|
+def ttfidf_list_generation(tag_corpus,tag_dict):
|
|
|
+ tag_tfidf_list = []
|
|
|
+ for i in tag_corpus:
|
|
|
+ try :
|
|
|
+ tag_tfidf_list.append(tag_dict[i])
|
|
|
+ except:
|
|
|
+ tag_tfidf_list.append(0)
|
|
|
+ return tag_tfidf_list
|
|
|
+
|
|
|
+
|
|
|
+# In[27]:
|
|
|
+
|
|
|
+
|
|
|
+#获取tag-one-hot
|
|
|
+tags ,train_tag,test_tag = tag_preprocessing('tag')
|
|
|
+#获取tag tfidf
|
|
|
+tag_dict = get_tag_tfidf('20200305','video_tag_tf_idf')
|
|
|
+print('lenth tag_dict:',len(tag_dict))
|
|
|
+#获取tfidf_tag 稀疏矩阵
|
|
|
+tag_corpus = tags.tolist() #corpus
|
|
|
+tag_tfidf_list = ttfidf_list_generation(tag_corpus,tag_dict )
|
|
|
+tag_tf_idf_matrix = sparse.csr_matrix(np.array(tag_tfidf_list))
|
|
|
+
|
|
|
+tag_feature_train = train_tag.multiply(tag_tf_idf_matrix)
|
|
|
+tag_feature_test = test_tag.multiply(tag_tf_idf_matrix)
|
|
|
+print('tag tfidf feature generate successfully')
|
|
|
+
|
|
|
+print('tag dimension:', len(tag_tfidf_list))
|
|
|
+
|
|
|
+
|
|
|
+# In[28]:
|
|
|
+
|
|
|
+
|
|
|
+#获取values without tag
|
|
|
+words ,train_words,test_words = tag_preprocessing('words_no_tag')
|
|
|
+#获取words tfidf
|
|
|
+words_dict = get_tag_tfidf('20200305','video_words_without_tags_tfidf')
|
|
|
+print('lenth words_dict:',len(words_dict))
|
|
|
+#获取tfidf_tag 稀疏矩阵
|
|
|
+words_corpus = words.tolist() #corpus
|
|
|
+words_tfidf_list = ttfidf_list_generation(words_corpus,words_dict )
|
|
|
+words_tf_idf_matrix = sparse.csr_matrix(np.array(words_tfidf_list))
|
|
|
+words_feature_train = train_words.multiply(words_tf_idf_matrix)
|
|
|
+words_feature_test = test_words.multiply(words_tf_idf_matrix)
|
|
|
+print('tag tfidf feature generate successfully')
|
|
|
+print('words dimension:', len(words_tfidf_list))
|
|
|
+
|
|
|
+
|
|
|
+# In[32]:
|
|
|
+
|
|
|
+
|
|
|
+#cancat 特征
|
|
|
+from scipy.sparse import hstack
|
|
|
+
|
|
|
+#训练特征
|
|
|
+df_new_feature = hstack([df_new_feature_part_one,train_videoid,tag_feature_train, words_feature_train])
|
|
|
+df_new_feature_test = hstack([df_new_feature_test_part_one,test_videoid,tag_feature_test,words_feature_test])
|
|
|
+
|
|
|
+#target
|
|
|
+df_target_test = sparse.csr_matrix(pd.DataFrame(df_target_test).values).toarray()
|
|
|
+df_target = sparse.csr_matrix(pd.DataFrame(df_target).values).toarray()
|
|
|
+
|
|
|
+
|
|
|
+# In[33]:
|
|
|
+
|
|
|
+
|
|
|
+df_target.size
|
|
|
+
|
|
|
+
|
|
|
+# In[34]:
|
|
|
+
|
|
|
+
|
|
|
+param = {'num_leaves': 18,
|
|
|
+ 'min_data_in_leaf': 60,
|
|
|
+ 'objective': 'regression',
|
|
|
+ 'max_depth': -1,
|
|
|
+ 'learning_rate': 0.01,
|
|
|
+ "min_child_samples": 30,
|
|
|
+ "boosting": "gbdt",
|
|
|
+ "feature_fraction": 0.8,
|
|
|
+ "bagging_freq": 1,
|
|
|
+ "bagging_fraction": 0.8,
|
|
|
+ "bagging_seed": 11,
|
|
|
+ "metric": 'rmse',
|
|
|
+ "lambda_l1": 0.1,
|
|
|
+ "verbosity": -1,
|
|
|
+ "nthread": 4,
|
|
|
+ # 'max_bin': 512,
|
|
|
+ "random_state": 4590}
|
|
|
+
|
|
|
+folds = StratifiedKFold(n_splits=4, shuffle=True, random_state=4590)
|
|
|
+oof = np.zeros(len(pd.DataFrame(df_new_feature.toarray())))
|
|
|
+predictions = np.zeros(len(df_target_test))
|
|
|
+feature_importance_df = pd.DataFrame()
|
|
|
+
|
|
|
+
|
|
|
+# In[ ]:
|
|
|
+
|
|
|
+# In[46]:
|
|
|
+
|
|
|
+
|
|
|
+values_lenth = len(features + cate_feat)
|
|
|
+video_id_lenth = len(mlb_model_videoid.classes_)
|
|
|
+tag_length = len(tag_tfidf_list)
|
|
|
+word_length = len(words_tfidf_list)
|
|
|
+
|
|
|
+
|
|
|
+print(values_lenth)
|
|
|
+print(video_id_lenth)
|
|
|
+print(tag_length)
|
|
|
+print(word_length)
|
|
|
+
|
|
|
+
|
|
|
+# In[36]:
|
|
|
+
|
|
|
+
|
|
|
+change_view = pd.DataFrame(pd.DataFrame(df_new_feature_test.toarray()))
|
|
|
+change_view = change_view.sort_index()
|
|
|
+
|
|
|
+
|
|
|
+# In[64]:
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+# In[67]:
|
|
|
+
|
|
|
+
|
|
|
+for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_new_feature, data_train['return_back'].values)):
|
|
|
+ print("folds {}".format(fold_))
|
|
|
+ trn_data = lgb.Dataset(df_new_feature.tocsr()[trn_idx,:], label=pd.DataFrame(df_target).iloc[trn_idx])
|
|
|
+ val_data = lgb.Dataset(df_new_feature.tocsr()[val_idx,:], label=pd.DataFrame(df_target).iloc[val_idx])
|
|
|
+
|
|
|
+ num_round = 10000
|
|
|
+ clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100,
|
|
|
+ early_stopping_rounds=200)
|
|
|
+ oof[val_idx] = clf.predict(df_new_feature.tocsr()[val_idx,:], num_iteration=clf.best_iteration)
|
|
|
+ predictions += clf.predict(df_new_feature_test, num_iteration=clf.best_iteration) / folds.n_splits
|
|
|
+
|
|
|
+ fold_importance_df = pd.DataFrame()
|
|
|
+
|
|
|
+ column = features+cate_feat+mlb_model_videoid.classes_.tolist()+ tag_corpus + words_corpus
|
|
|
+ fold_importance_df["Feature"] = np.array(column)
|
|
|
+
|
|
|
+ fold_importance_df["importance"] = clf.feature_importance()
|
|
|
+ fold_importance_df["fold"] = fold_ + 1
|
|
|
+ feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
|
|
|
+
|
|
|
+
|
|
|
+# In[72]:
|
|
|
+
|
|
|
+
|
|
|
+print(values_lenth)
|
|
|
+print(video_id_lenth)
|
|
|
+print(tag_length)
|
|
|
+print(word_length)
|
|
|
+fold1_df = feature_importance_df.loc[feature_importance_df['fold']==1]
|
|
|
+fold2_df = feature_importance_df.loc[feature_importance_df['fold']==2]
|
|
|
+fold3_df = feature_importance_df.loc[feature_importance_df['fold']==3]
|
|
|
+fold4_df = feature_importance_df.loc[feature_importance_df['fold']==4]
|
|
|
+
|
|
|
+
|
|
|
+# In[95]:
|
|
|
+
|
|
|
+
|
|
|
+def featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length):
|
|
|
+ Feature_Data= pd.DataFrame()
|
|
|
+ for df in (fold1_df,fold2_df,fold3_df,fold4_df):
|
|
|
+ fold1_df1 = df.iloc[0:values_lenth,:]
|
|
|
+ videoid_fold1_importance = df.iloc[values_lenth:values_lenth+video_id_lenth,:]['importance'].sum()
|
|
|
+ fold1_df2 = pd.DataFrame([{'Feature':'videoid','importance':videoid_fold1_importance,'fold':1}])
|
|
|
+ tag_fold1_importance = df.iloc[values_lenth+video_id_lenth:values_lenth+video_id_lenth+tag_length,:]['importance'].sum()
|
|
|
+ fold1_df3 = pd.DataFrame([{'Feature':'tags','importance':tag_fold1_importance,'fold':1}])
|
|
|
+ words_fold1_importance = df.iloc[values_lenth+video_id_lenth+tag_length:values_lenth+video_id_lenth+tag_length+word_length,:]['importance'].sum()
|
|
|
+ fold1_df4 = pd.DataFrame([{'Feature':'words','importance':words_fold1_importance,'fold':1}])
|
|
|
+
|
|
|
+
|
|
|
+ Feature_Data = pd.concat([Feature_Data,fold1_df1,fold1_df2,fold1_df3,fold1_df4])
|
|
|
+
|
|
|
+ return Feature_Data
|
|
|
+
|
|
|
+
|
|
|
+# In[96]:
|
|
|
+
|
|
|
+
|
|
|
+feature_importance_df = featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length)
|
|
|
+
|
|
|
+
|
|
|
+# In[98]:
|
|
|
+
|
|
|
+
|
|
|
+print('oof_rmse:', np.sqrt(mean_squared_error(df_target, oof)))
|
|
|
+print('oof_mse:', mean_squared_error(df_target, oof))
|
|
|
+
|
|
|
+print('test_rmse:', np.sqrt(mean_squared_error(df_target_test, predictions)))
|
|
|
+print('test_mse:', mean_squared_error(df_target_test, predictions))
|
|
|
+
|
|
|
+
|
|
|
+# In[99]:
|
|
|
+
|
|
|
+
|
|
|
+def MAPE(true, pred):
|
|
|
+ true = np.array(true)
|
|
|
+ sum_ = 0
|
|
|
+ count = 0
|
|
|
+ for i in range(len(true)):
|
|
|
+ if true[i] != 0:
|
|
|
+ sum_ = sum_ + np.abs(true[i] - pred[i]) / true[i]
|
|
|
+ count = count + 1
|
|
|
+
|
|
|
+ else:
|
|
|
+ continue
|
|
|
+
|
|
|
+ return sum_ / count
|
|
|
+
|
|
|
+
|
|
|
+print('oof_mape:', MAPE(df_target, oof))
|
|
|
+print('test_mape:', MAPE(df_target_test, predictions))
|
|
|
+
|
|
|
+
|
|
|
+# In[100]:
|
|
|
+
|
|
|
+
|
|
|
+# from sklearn.metrics import r2_score
|
|
|
+
|
|
|
+print('verification r2:', r2_score(df_target, oof))
|
|
|
+print('test r2:', r2_score(df_target_test, predictions))
|
|
|
+
|
|
|
+sub_df_ = pd.DataFrame({"videoid": data_test["videoid"].values})
|
|
|
+sub_df_['score'] = predictions
|
|
|
+print('regre ranking shape', sub_df_.shape)
|
|
|
+
|
|
|
+
|
|
|
+# In[101]:
|
|
|
+
|
|
|
+
|
|
|
+if ten_percent_thresh < 0.4:
|
|
|
+ rest_video = recall_video[recall_video['score'] <= 0.35]
|
|
|
+else:
|
|
|
+ rest_video = recall_video[recall_video['score'] <= ten_percent_thresh]
|
|
|
+
|
|
|
+# recall_all = pd.concat([rest_video,sub_df_],axis=0).sort_values(by=['score'],ascending=False)
|
|
|
+# recall_all.columns = ['videoId', 'score']
|
|
|
+
|
|
|
+recall_all = sub_df_.sort_values(by=['score'], ascending=False)
|
|
|
+recall_all.columns = ['videoId', 'score']
|
|
|
+
|
|
|
+print('result score shape', recall_all.shape)
|
|
|
+
|
|
|
+
|
|
|
+# In[102]:
|
|
|
+
|
|
|
+
|
|
|
+# recall_all.to_json('/root/ROVtrain/readonlinetable/video_score_add_newfeature'+ datetime.datetime.strftime(now_date, '%Y%m%d')[-4:] + '.json',orient='records')
|
|
|
+# print('save json success')
|
|
|
+
|
|
|
+recall_all.to_json(
|
|
|
+ '/root/ROVtrain/readonlinetable/result/video_score_' + datetime.datetime.strftime(now_date, '%Y%m%d')[
|
|
|
+ -4:] + '.json', orient='records')
|
|
|
+print('save json success')
|
|
|
+
|
|
|
+
|
|
|
+# In[103]:
|
|
|
+
|
|
|
+
|
|
|
+sub_df_ = pd.DataFrame({"videoid": data_test["videoid"].values})
|
|
|
+sub_df_['score'] = predictions
|
|
|
+compare_col_ = data_test[
|
|
|
+ ['videoid', 'weighted_retrn_log', 'weighted_retrn', 'todyviewcount', 'day3viewcount', 'day1viewcount',
|
|
|
+ 'day3returncount', 'day1returncount']]
|
|
|
+merge_ = pd.merge(compare_col_, sub_df_, on=['videoid'])
|
|
|
+
|
|
|
+
|
|
|
+# In[104]:
|
|
|
+
|
|
|
+
|
|
|
+# merge_.shape
|
|
|
+merge_.to_csv('/root/ROVtrain/readonlinetable/video_metric_score/' + now_day[-4:] + '/' + 'video_metric' + '.csv',
|
|
|
+ index=False)
|
|
|
+feature_importance_df.to_csv(
|
|
|
+ '/root/ROVtrain/readonlinetable/video_metric_score/' + now_day[-4:] + '/' + 'feature_importance' + '.csv',
|
|
|
+ index=False)
|
|
|
+print('end')
|
|
|
+
|