baichongyang 3 lat temu
rodzic
commit
0d1f3c76a6
3 zmienionych plików z 148 dodań i 160 usunięć
  1. 3 0
      process_feature.py
  2. 9 15
      process_tag.py
  3. 136 145
      rov_train.py

+ 3 - 0
process_feature.py

@@ -1,3 +1,6 @@
+import time
+import numpy as np
+
 add_feature = [
     'all_return_day1_return_count',  # -- 1/3/7/14日内总回流  #12
     'all_return_day3_return_count',

+ 9 - 15
process_tag.py

@@ -1,33 +1,30 @@
-def tag_preprocessing(filename):
+import numpy as np
+import pandas as pd
+from sklearn.preprocessing import MultiLabelBinarizer
+from odps import ODPS
+
+def tag_preprocessing(filename,df_new_feature, df_new_feature_predict):
     #读取tag分词结果
     tag_txt = open("/root/ROVtrain/tfidfCompution/"+ filename +".txt","r")   #设置文件对象
     ftextlist = tag_txt.readlines() # 同上
     tag_txt.close() #关闭文件
-    
 
     #转为corpus
     tagList = str(ftextlist).replace('[','').replace(']','').replace("'","").replace("'","").split(',')
     tag = np.array(tagList).reshape(len(tagList),1).tolist()
-    
-    
-
 
     #将词特征转为list形式
     train_tag_feature =  pd.DataFrame(df_new_feature).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videotags']),1).tolist()
-    test_tag_feature = pd.DataFrame(df_new_feature_test).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videotags']),1).tolist()
+    predict_tag_feature = pd.DataFrame(df_new_feature_predict).loc[:,'videotags'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_predict).loc[:,'videotags']),1).tolist()
     
     #稀疏特征
     mlb_model_tag = MultiLabelBinarizer(sparse_output=True).fit(tag)
     train_tag = mlb_model_tag.transform(train_tag_feature)
-    test_tag = mlb_model_tag.transform(test_tag_feature)
+    predict_tag = mlb_model_tag.transform(predict_tag_feature)
     
-    return mlb_model_tag.classes_,train_tag,test_tag
+    return mlb_model_tag.classes_,train_tag,predict_tag
 
 
-# In[25]:
-
-
-#读取tf,idf
 def get_tag_tfidf(dt, tfidf_table_name):
     odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'videoods',
                 endpoint='http://service.cn.maxcompute.aliyun.com/api', connect_timeout=3000, \
@@ -38,9 +35,6 @@ def get_tag_tfidf(dt, tfidf_table_name):
     return tag_dict
 
 
-# In[26]:
-
-
 def ttfidf_list_generation(tag_corpus,tag_dict):
     tag_tfidf_list = []
     for i in tag_corpus:

+ 136 - 145
rov_train.py

@@ -13,6 +13,7 @@ from sklearn.linear_model import SGDClassifier
 import lightgbm as lgb
 from sklearn.model_selection import train_test_split
 from sklearn.model_selection import StratifiedKFold
+from sklearn.preprocessing import MultiLabelBinarizer
 from sklearn import metrics
 import pickle
 from sklearn.metrics import mean_squared_error
@@ -22,16 +23,12 @@ from odps import ODPS
 from odps.df import DataFrame as odpsdf
 from datetime import datetime as dt
 import datetime
+from scipy import sparse
+from scipy.sparse import hstack
+
+import process_feature
+import process_tag
 
-now_date = datetime.date.today() 
-# day = datetime.datetime.strftime(now_date, '%Y%m%d')
-diff_1 = datetime.timedelta(days=1)
-diff_5 = datetime.timedelta(days=7)
-input_dt = now_date - diff_1
-input_day = datetime.datetime.strftime(input_dt, '%Y%m%d')
-now_day = datetime.datetime.strftime(now_date, '%Y%m%d')
-train_dt = now_date - diff_5
-train_day = datetime.datetime.strftime(train_dt, '%Y%m%d')
 
 def getRovfeaturetable(dt, table):
     odps = ODPS('LTAI4FtW5ZzxMvdw35aNkmcp', '0VKnydcaHK3ITjylbgUsLubX6rwiwc', 'usercdm',
@@ -41,7 +38,7 @@ def getRovfeaturetable(dt, table):
     featureArray = []
     for record in odps.read_table(table, partition='dt=%s' % dt):
         valueFeature = {}
-        for i in featurename:
+        for i in process_feature.featurename:
             if i == 'dt':
                 valueFeature[i] = dt
             else:
@@ -61,17 +58,12 @@ def getdatasample(date, max_range, table):
         datelist.append(tar_dt.strftime("%Y%m%d"))
     print(datelist)
     for tm in datelist:
-        testlist.append(getRovtestable(tm, table))
+        testlist.append(getRovfeaturetable(tm, table))
     testdata = pd.concat(testlist)
     testdata.reset_index(inplace=True)
     testdata = testdata.drop(axis=1, columns='index')
     return testdata
 
-
-traindata = getrainingdata(train_day, 30, 'rov_feature_add_v1')
-data_test_ori_rk = getestingdata(input_day, 1, 'rov_predict_table_add_v1')
-
-
 def select_recent_video(df):
     """对每一个视频添加row number,按照日期排序,最后选取最近的那一天"""
     df['dt'] = df['dt'].astype(int)
@@ -79,15 +71,6 @@ def select_recent_video(df):
     df = df[df['rk'] == 1]
     return df
 
-
-data_test_ori = select_recent_video(data_test_ori_rk)
-data_test_ori.loc[data_test_ori['dt'] != int(input_day), 'futre7dayreturn'] = 0
-data_test_ori = data_test_ori.drop(axis=1, columns='rk')
-
-traindata.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
-data_test_ori.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
-
-
 def basic_cal(df):
     df['weighted_retrn'] = df['futre7dayreturn'].astype('int') 
     df['weighted_retrn_log'] = df.apply(lambda x: np.log(x['weighted_retrn'] + 1),axis=1)
@@ -95,111 +78,34 @@ def basic_cal(df):
     df['return_back'] = df.apply(lambda x:1 if x['weighted_retrn']> 0 else 0,axis=1)
     return df 
 
-
-data_train = basic_cal(traindata)
-data_test = basic_cal(data_test_ori)
-
 def today_view_category(df):
 ### 对当天的曝光量分三个级别,未来三天的曝光量分3个级别,添加Category feaure
-    data_test1_view1 =   df.loc[data_test['day1viewcount_rank'] > 10000]['day1viewcount'].mean()
-    data_test1_view2 =   df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000)]['day1viewcount'].mean()
-    data_test1_view3 =   df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000)]['day1viewcount'].mean()
-    data_test1_view4 =   df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000)]['day1viewcount'].mean()
-    data_test1_view5 =   df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300)]['day1viewcount'].mean()
-    data_test1_view6 =   df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100)]['day1viewcount'].mean()
-    data_test1_view7 =   df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30)]['day1viewcount'].mean()
+    data_test1_view1 =   df.loc[predict_data['day1viewcount_rank'] > 10000]['day1viewcount'].mean()
+    data_test1_view2 =   df.loc[(predict_data['day1viewcount_rank'] > 3000)&(predict_data['day1viewcount_rank'] <= 10000)]['day1viewcount'].mean()
+    data_test1_view3 =   df.loc[(predict_data['day1viewcount_rank'] > 1000)&(predict_data['day1viewcount_rank'] <= 3000)]['day1viewcount'].mean()
+    data_test1_view4 =   df.loc[(predict_data['day1viewcount_rank'] > 300)&(predict_data['day1viewcount_rank'] <= 1000)]['day1viewcount'].mean()
+    data_test1_view5 =   df.loc[(predict_data['day1viewcount_rank'] > 100)&(predict_data['day1viewcount_rank'] <= 300)]['day1viewcount'].mean()
+    data_test1_view6 =   df.loc[(predict_data['day1viewcount_rank'] > 30)&(predict_data['day1viewcount_rank'] <= 100)]['day1viewcount'].mean()
+    data_test1_view7 =   df.loc[(predict_data['day1viewcount_rank'] > 0)&(predict_data['day1viewcount_rank'] <= 30)]['day1viewcount'].mean()
     
     df.loc[df['day1viewcount_rank'] > 10000, 'todyviewcount'] = data_test1_view1
-    df.loc[(data_test['day1viewcount_rank'] > 3000)&(data_test['day1viewcount_rank'] <= 10000), 'todyviewcount'] = data_test1_view2
-    df.loc[(data_test['day1viewcount_rank'] > 1000)&(data_test['day1viewcount_rank'] <= 3000), 'todyviewcount'] = data_test1_view3
-    df.loc[(data_test['day1viewcount_rank'] > 300)&(data_test['day1viewcount_rank'] <= 1000), 'todyviewcount'] = data_test1_view4
-    df.loc[(data_test['day1viewcount_rank'] > 100)&(data_test['day1viewcount_rank'] <= 300), 'todyviewcount'] = data_test1_view5
-    df.loc[(data_test['day1viewcount_rank'] > 30)&(data_test['day1viewcount_rank'] <= 100), 'todyviewcount'] = data_test1_view6
-    df.loc[(data_test['day1viewcount_rank'] > 0)&(data_test['day1viewcount_rank'] <= 30), 'todyviewcount'] = data_test1_view7
+    df.loc[(predict_data['day1viewcount_rank'] > 3000)&(predict_data['day1viewcount_rank'] <= 10000), 'todyviewcount'] = data_test1_view2
+    df.loc[(predict_data['day1viewcount_rank'] > 1000)&(predict_data['day1viewcount_rank'] <= 3000), 'todyviewcount'] = data_test1_view3
+    df.loc[(predict_data['day1viewcount_rank'] > 300)&(predict_data['day1viewcount_rank'] <= 1000), 'todyviewcount'] = data_test1_view4
+    df.loc[(predict_data['day1viewcount_rank'] > 100)&(predict_data['day1viewcount_rank'] <= 300), 'todyviewcount'] = data_test1_view5
+    df.loc[(predict_data['day1viewcount_rank'] > 30)&(predict_data['day1viewcount_rank'] <= 100), 'todyviewcount'] = data_test1_view6
+    df.loc[(predict_data['day1viewcount_rank'] > 0)&(predict_data['day1viewcount_rank'] <= 30), 'todyviewcount'] = data_test1_view7
     return df
 
-data_test =  today_view_category(data_test) 
-
-
 def dataprepare(df_pre):
     #  直接将特征送进去,不加交叉特征。
     # 是否对数据补零
     df_pre = df_pre.fillna(0)
-    df_new_feature = df_pre[features]
+    df_new_feature = df_pre[process_feature.features]
     df_target = df_pre['weighted_retrn_log']
-    df_new_feature = pd.concat([df_new_feature, df_pre[cate_feat],df_pre[one_hot_feature]], axis=1)
+    df_new_feature = pd.concat([df_new_feature, df_pre[process_feature.cate_feat],df_pre[process_feature.one_hot_feature]], axis=1)
     return df_new_feature, df_target
 
-data_test['videoid'] = data_test['videoid'].astype('int')
-
-data_train = data_train[data_train['weighted_retrn'] > 0]
-print(data_train.shape, 'train shape')
-data_test = pd.merge(data_test, recall_video_stage_one, on=['videoid'], how='inner')
-print('score>0.5 video_count:', data_test.shape)
-
-df_new_feature,df_target= dataprepare(data_train)
-df_new_feature_test, df_target_test = dataprepare(data_test)
-
-
-#数值
-from scipy import sparse
-
-df_new_feature_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature).loc[:,'day1playcount':'videocategory555']))
-df_new_feature_test_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature_test).loc[:,'day1playcount':'videocategory555']))
-
-print('value feature generate successfully')
-
-train_videoid = pd.DataFrame(df_new_feature).loc[:,'videoid']
-test_videoid = pd.DataFrame(df_new_feature_test).loc[:,'videoid']
-
-train_videoid_list = pd.DataFrame(df_new_feature).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videoid']),1).tolist()
-test_videoid_list = pd.DataFrame(df_new_feature_test).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_test).loc[:,'videoid']),1).tolist()
-
-
-allvideo_raw = list(set(np.array(pd.concat([train_videoid,test_videoid])).tolist()))
-allvideo = np.array(allvideo_raw).reshape(len(allvideo_raw),1).tolist()
-from sklearn.preprocessing import MultiLabelBinarizer
-
-mlb_model_videoid = MultiLabelBinarizer(sparse_output=True).fit(allvideo)
-train_videoid = mlb_model_videoid.transform(train_videoid_list)
-test_videoid = mlb_model_videoid.transform(test_videoid_list)
-
-print('videoid feature generate successfully')
-
-#获取tag-one-hot
-tags ,train_tag,test_tag = tag_preprocessing('tag')
-#获取tag tfidf
-tag_dict = get_tag_tfidf('20200305','video_tag_tf_idf')
-print('lenth tag_dict:',len(tag_dict))
-#获取tfidf_tag 稀疏矩阵
-tag_corpus = tags.tolist()  #corpus
-tag_tfidf_list = ttfidf_list_generation(tag_corpus,tag_dict )
-tag_tf_idf_matrix  = sparse.csr_matrix(np.array(tag_tfidf_list))
-
-tag_feature_train = train_tag.multiply(tag_tf_idf_matrix)  
-tag_feature_test = test_tag.multiply(tag_tf_idf_matrix)  
-print('tag tfidf feature generate successfully')
-
-print('tag dimension:', len(tag_tfidf_list))
-
-
-# In[28]:
-
-
-#获取values without tag
-words ,train_words,test_words = tag_preprocessing('words_no_tag')
-#获取words tfidf
-words_dict = get_tag_tfidf('20200305','video_words_without_tags_tfidf')
-print('lenth words_dict:',len(words_dict))
-#获取tfidf_tag 稀疏矩阵
-words_corpus = words.tolist()  #corpus
-words_tfidf_list = ttfidf_list_generation(words_corpus,words_dict )
-words_tf_idf_matrix  = sparse.csr_matrix(np.array(words_tfidf_list))
-words_feature_train = train_words.multiply(words_tf_idf_matrix)  
-words_feature_test = test_words.multiply(words_tf_idf_matrix)  
-print('tag tfidf feature generate successfully')
-print('words dimension:', len(words_tfidf_list))
-
 
 def featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length):
     Feature_Data= pd.DataFrame()
@@ -233,15 +139,101 @@ def MAPE(true, pred):
     return sum_ / count
 
 
+def process_train_predict_data():
+    now_date = datetime.date.today() 
+    # day = datetime.datetime.strftime(now_date, '%Y%m%d')
+    diff_1 = datetime.timedelta(days=1)
+    diff_5 = datetime.timedelta(days=7)
+    predict_dt = now_date - diff_1
+    predict_day = datetime.datetime.strftime(predict_dt, '%Y%m%d')
+    train_dt = now_date - diff_5
+    train_day = datetime.datetime.strftime(train_dt, '%Y%m%d')
+
+    train_data = getdatasample(train_day, 30, 'rov_feature_add_v1')
+    predict_data = getdatasample(predict_day, 1, 'rov_predict_table_add_v1')
+    #TODO save tempt
+    
+    train_data = basic_cal(train_data)
+    predict_data = basic_cal(predict_data)
+
+    predict_data = select_recent_video(predict_data)
+    predict_data.loc[predict_data['dt'] != int(predict_day), 'futre7dayreturn'] = 0
+    predict_data = predict_data.drop(axis=1, columns='rk')
+
+    train_data.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
+    predict_data.drop_duplicates(subset=['videoid', 'dt'], keep='first', inplace=True)
 
-def do_train():
-    from scipy.sparse import hstack
+    train_data = train_data.fillna(0)
+    predict_data = predict_data.fillna(0)
+    train_data = process_feature.cal_feature(train_data)
+    predict_data = process_feature.cal_feature(predict_data)
+    predict_data =  today_view_category(predict_data) 
+
+    predict_data['videoid'] = predict_data['videoid'].astype('int')
+
+    df_new_feature,df_target= dataprepare(train_data)
+    df_new_feature_predict, df_target_predict = dataprepare(predict_data)
+
+    df_new_feature_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature).loc[:,'day1playcount':'videocategory555']))
+    df_new_feature_predict_part_one = sparse.csr_matrix(np.array(pd.DataFrame(df_new_feature_predict).loc[:,'day1playcount':'videocategory555']))
+
+    print('value feature generate successfully')
+
+    train_videoid = pd.DataFrame(df_new_feature).loc[:,'videoid']
+    predict_videoid = pd.DataFrame(df_new_feature_predict).loc[:,'videoid']
+
+    train_videoid_list = pd.DataFrame(df_new_feature).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature).loc[:,'videoid']),1).tolist()
+    predict_videoid_list = pd.DataFrame(df_new_feature_predict).loc[:,'videoid'].to_numpy().reshape(len(pd.DataFrame(df_new_feature_predict).loc[:,'videoid']),1).tolist()
+
+
+    allvideo_raw = list(set(np.array(pd.concat([train_videoid,predict_videoid])).tolist()))
+    allvideo = np.array(allvideo_raw).reshape(len(allvideo_raw),1).tolist()
+    
+
+    mlb_model_videoid = MultiLabelBinarizer(sparse_output=True).fit(allvideo)
+    train_videoid = mlb_model_videoid.transform(train_videoid_list)
+    predict_videoid = mlb_model_videoid.transform(predict_videoid_list)
+
+    print('videoid feature generate successfully')
+
+    #获取tag-one-hot
+    tags ,train_tag,predict_tag = process_tag.tag_preprocessing('tag', df_new_feature, df_new_feature_predict)
+    #获取tag tfidf
+    tag_dict = process_tag.get_tag_tfidf('20200305','video_tag_tf_idf')
+    print('lenth tag_dict:',len(tag_dict))
+    #获取tfidf_tag 稀疏矩阵
+    tag_corpus = tags.tolist()  #corpus
+    tag_tfidf_list = process_tag.ttfidf_list_generation(tag_corpus,tag_dict )
+    tag_tf_idf_matrix  = sparse.csr_matrix(np.array(tag_tfidf_list))
+
+    tag_feature_train = train_tag.multiply(tag_tf_idf_matrix)  
+    tag_feature_test = predict_tag.multiply(tag_tf_idf_matrix)  
+    print('tag tfidf feature generate successfully')
+    print('tag dimension:', len(tag_tfidf_list))
+
+    #获取values without tag
+    words ,train_words,test_words = process_tag.tag_preprocessing('words_no_tag')
+    #获取words tfidf
+    words_dict = process_tag.get_tag_tfidf('20200305','video_words_without_tags_tfidf')
+    print('lenth words_dict:',len(words_dict))
+    #获取tfidf_tag 稀疏矩阵
+    words_corpus = words.tolist()  #corpus
+    words_tfidf_list = process_tag.ttfidf_list_generation(words_corpus,words_dict )
+    words_tf_idf_matrix  = sparse.csr_matrix(np.array(words_tfidf_list))
+    words_feature_train = train_words.multiply(words_tf_idf_matrix)  
+    words_feature_test = test_words.multiply(words_tf_idf_matrix)  
+    print('tag tfidf feature generate successfully')
+    print('words dimension:', len(words_tfidf_list))
 
     df_new_feature = hstack([df_new_feature_part_one,train_videoid,tag_feature_train, words_feature_train])
-    df_new_feature_test = hstack([df_new_feature_test_part_one,test_videoid,tag_feature_test,words_feature_test])
+    df_new_feature_predict = hstack([df_new_feature_predict_part_one,predict_videoid,tag_feature_test,words_feature_test])
+ 
+
+
+def do_train(train_data, predict_data, df_target, df_target_predict, df_new_feature, df_new_feature_predict):
 
     #target
-    df_target_test = sparse.csr_matrix(pd.DataFrame(df_target_test).values).toarray()
+    df_target_predict = sparse.csr_matrix(pd.DataFrame(df_target_predict).values).toarray()
     df_target = sparse.csr_matrix(pd.DataFrame(df_target).values).toarray()
 
 
@@ -265,21 +257,21 @@ def do_train():
 
     folds = StratifiedKFold(n_splits=4, shuffle=True, random_state=4590)
     oof = np.zeros(len(pd.DataFrame(df_new_feature.toarray())))
-    predictions = np.zeros(len(df_target_test))
+    predictions = np.zeros(len(df_target_predict))
     feature_importance_df = pd.DataFrame()
 
 
-    values_lenth = len(features + cate_feat)
-    video_id_lenth = len(mlb_model_videoid.classes_)
-    tag_length = len(tag_tfidf_list)
-    word_length = len(words_tfidf_list)
+    # values_lenth = len(process_feature.features + process_feature.cate_feat)
+    # video_id_lenth = len(mlb_model_videoid.classes_)
+    # tag_length = len(tag_tfidf_list)
+    # word_length = len(words_tfidf_list)
 
 
-    change_view = pd.DataFrame(pd.DataFrame(df_new_feature_test.toarray()))
+    change_view = pd.DataFrame(pd.DataFrame(df_new_feature_predict.toarray()))
     change_view = change_view.sort_index()
 
 
-    for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_new_feature, data_train['return_back'].values)):
+    for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_new_feature, train_data['return_back'].values)):
         print("folds {}".format(fold_))
         trn_data = lgb.Dataset(df_new_feature.tocsr()[trn_idx,:], label=pd.DataFrame(df_target).iloc[trn_idx])
         val_data = lgb.Dataset(df_new_feature.tocsr()[val_idx,:], label=pd.DataFrame(df_target).iloc[val_idx])
@@ -288,41 +280,40 @@ def do_train():
         clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100,
                 early_stopping_rounds=200)
         oof[val_idx] = clf.predict(df_new_feature.tocsr()[val_idx,:], num_iteration=clf.best_iteration)
-        predictions += clf.predict(df_new_feature_test, num_iteration=clf.best_iteration) / folds.n_splits
+        predictions += clf.predict(df_new_feature_predict, num_iteration=clf.best_iteration) / folds.n_splits
 
         fold_importance_df = pd.DataFrame()
         
-        column = features+cate_feat+mlb_model_videoid.classes_.tolist()+ tag_corpus + words_corpus
-        fold_importance_df["Feature"] = np.array(column)
+        # column = process_feature.features+process_feature.cate_feat+mlb_model_videoid.classes_.tolist()+ tag_corpus + words_corpus
+        # fold_importance_df["Feature"] = np.array(column)
         
-        fold_importance_df["importance"] = clf.feature_importance()
-        fold_importance_df["fold"] = fold_ + 1
-        feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
-
+        # fold_importance_df["importance"] = clf.feature_importance()
+        # fold_importance_df["fold"] = fold_ + 1
+        # feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
 
-    fold1_df = feature_importance_df.loc[feature_importance_df['fold']==1]
-    fold2_df = feature_importance_df.loc[feature_importance_df['fold']==2]
-    fold3_df = feature_importance_df.loc[feature_importance_df['fold']==3]
-    fold4_df = feature_importance_df.loc[feature_importance_df['fold']==4]
 
+    # fold1_df = feature_importance_df.loc[feature_importance_df['fold']==1]
+    # fold2_df = feature_importance_df.loc[feature_importance_df['fold']==2]
+    # fold3_df = feature_importance_df.loc[feature_importance_df['fold']==3]
+    # fold4_df = feature_importance_df.loc[feature_importance_df['fold']==4]
 
 
-    feature_importance_df = featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length)
+    # feature_importance_df = featureImportance(fold1_df,fold2_df,fold3_df,fold4_df,values_lenth,video_id_lenth,tag_length,word_length)
 
     print('oof_rmse:', np.sqrt(mean_squared_error(df_target, oof)))
     print('oof_mse:', mean_squared_error(df_target, oof))
 
-    print('test_rmse:', np.sqrt(mean_squared_error(df_target_test, predictions)))
-    print('test_mse:', mean_squared_error(df_target_test, predictions))
+    print('test_rmse:', np.sqrt(mean_squared_error(df_target_predict, predictions)))
+    print('test_mse:', mean_squared_error(df_target_predict, predictions))
 
 
     print('oof_mape:', MAPE(df_target, oof))
-    print('test_mape:', MAPE(df_target_test, predictions))
+    print('test_mape:', MAPE(df_target_predict, predictions))
 
     print('verification r2:', r2_score(df_target, oof))
-    print('test r2:', r2_score(df_target_test, predictions))
+    print('test r2:', r2_score(df_target_predict, predictions))
 
-    sub_df_ = pd.DataFrame({"videoid": data_test["videoid"].values})
+    sub_df_ = pd.DataFrame({"videoid": predict_data["videoid"].values})
     sub_df_['score'] = predictions
     print('regre ranking shape', sub_df_.shape)