import json import requests from core.config import logger from core.database import DBHelper from data_models.content_chunks import ContentChunks def get_embedding_data(query): try: response = requests.post( url='http://192.168.100.31:8001/api/search', json={ "query": query, "search_type": "by_vector", "limit": 5}, headers={"Content-Type": "application/json"}, ) return response.json()['results'] except Exception as e: logger.error(e) return [] def get_embedding_content_data(query): res = [] db_helper = DBHelper() results = get_embedding_data(query) if results: for result in results: content_chunk = db_helper.get(ContentChunks, doc_id=result['doc_id'], chunk_id=result['chunk_id']) res.append( {'content': content_chunk.text, 'content_summary': content_chunk.summary, 'score': result['score']}) return res if __name__ == '__main__': results = get_embedding_content_data("AI绘图工具") print(json.dumps(results, ensure_ascii=False))