agent.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. from typing import Annotated
  2. from typing_extensions import TypedDict
  3. from langgraph.graph import StateGraph, START, END
  4. from langgraph.graph.message import add_messages
  5. import os
  6. from langchain_openai import ChatOpenAI
  7. from .tools import evaluation_extraction_tool
  8. from langgraph.prebuilt import ToolNode, tools_condition
  9. from langgraph.checkpoint.memory import InMemorySaver
  10. import requests
  11. from dotenv import load_dotenv
  12. # 加载环境变量
  13. load_dotenv()
  14. graph=None
  15. llm_with_tools=None
  16. prompt="""
  17. ### 角色 (Role):
  18. 您是一个专业的评估报告检索助手,我的任务是根据用户的查询关键词,从评估报告中提取相关信息。
  19. ### 目标 (Goal):
  20. 1. 根据特定的主题(关键词)快速获取相关的评估报告、数据摘要或关键指标,以便您能深入了解某个方面(如产品表现、服务质量、市场反馈、项目评估等)的详细评估情况。
  21. 2. 为您的每次查询提供一个唯一的标识符,以便您能轻松追踪和管理您的请求,确保数据的可追溯性。
  22. ---
  23. ### 工作流 (Workflow):
  24. 1. 从输入信息中提取关键词(query_word)和请求ID(request_id)
  25. 2. 调用工具evaluation_extraction_tool,进行评估解析
  26. 3. 返回结果
  27. ---
  28. ### 输入信息:
  29. {input}
  30. ### 输出json格式:
  31. {
  32. "requestId":[请求ID],
  33. "status":2
  34. }
  35. """
  36. class State(TypedDict):
  37. messages: Annotated[list, add_messages]
  38. name: str
  39. birthday: str
  40. def chatbot(state: State):
  41. message = llm_with_tools.invoke(state["messages"])
  42. # Because we will be interrupting during tool execution,
  43. # we disable parallel tool calling to avoid repeating any
  44. # tool invocations when we resume.
  45. assert len(message.tool_calls) <= 1
  46. return {"messages": [message]}
  47. def execute_agent_with_api(user_input: str):
  48. global graph, llm_with_tools, prompt
  49. # 替换prompt中的{input}占位符为用户输入
  50. formatted_prompt = prompt.replace("{input}", user_input)
  51. try:
  52. # 如果graph或llm_with_tools未初始化,先初始化
  53. if graph is None or llm_with_tools is None:
  54. try:
  55. # 使用新版本的 ChatOpenAI
  56. llm = ChatOpenAI(model="gpt-4")
  57. tools = [evaluation_extraction_tool]
  58. llm_with_tools = llm.bind_tools(tools=tools)
  59. # 初始化图
  60. graph_builder = StateGraph(State)
  61. graph_builder.add_node("chatbot", chatbot)
  62. tool_node = ToolNode(tools=tools)
  63. graph_builder.add_node("tools", tool_node)
  64. graph_builder.add_conditional_edges(
  65. "chatbot",
  66. tools_condition,
  67. )
  68. graph_builder.add_edge("tools", "chatbot")
  69. graph_builder.add_edge(START, "chatbot")
  70. memory = InMemorySaver()
  71. graph = graph_builder.compile(checkpointer=memory)
  72. except Exception as e:
  73. return f"初始化Agent失败: {str(e)}"
  74. # 生成唯一的线程ID
  75. import uuid
  76. thread_id = str(uuid.uuid4())
  77. # 执行Agent并收集结果
  78. results = []
  79. config = {"configurable": {"thread_id": thread_id}}
  80. # 使用格式化后的prompt作为用户输入
  81. for event in graph.stream({"messages": [{"role": "user", "content": formatted_prompt}]}, config, stream_mode="values"):
  82. for value in event.values():
  83. # 保存消息内容
  84. if "messages" in event and len(event["messages"]) > 0:
  85. message = event["messages"][-1]
  86. results.append(message.content)
  87. # 返回结果
  88. return "\n".join(results) if results else "Agent执行完成,但没有返回结果"
  89. except requests.exceptions.ConnectionError as e:
  90. return f"OpenAI API 连接错误: {str(e)}\n请检查网络连接或代理设置。"
  91. except Exception as e:
  92. return f"执行Agent时出错: {str(e)}"
  93. def main():
  94. print(f"开始执行Agent")
  95. # 设置代理
  96. proxy_url = os.getenv('DYNAMIC_HTTP_PROXY')
  97. if proxy_url:
  98. os.environ["OPENAI_PROXY"] = proxy_url
  99. os.environ["HTTPS_PROXY"] = proxy_url
  100. os.environ["HTTP_PROXY"] = proxy_url
  101. # 执行Agent
  102. result = execute_agent_with_api('{"query_word":"图文策划方法","request_id":"REQUEST_001"}')
  103. print(result)
  104. if __name__ == '__main__':
  105. main()