|
@@ -1,4 +1,4 @@
|
|
|
-from langchain.tools import Tool
|
|
|
+from langchain.tools import tool
|
|
|
from sqlalchemy.orm import Session
|
|
|
from typing import Dict, Any, Tuple
|
|
|
import logging
|
|
@@ -6,6 +6,7 @@ from datetime import datetime
|
|
|
import json
|
|
|
import os
|
|
|
import sys
|
|
|
+import re
|
|
|
|
|
|
# 添加项目根目录到系统路径
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
@@ -19,11 +20,17 @@ logging.basicConfig(level=logging.INFO)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# 配置常量
|
|
|
-BATCH_SIZE = 10 # 分批处理大小
|
|
|
+BATCH_SIZE = 5 # 分批处理大小
|
|
|
SCORE_THRESHOLD = 70 # 评分阈值
|
|
|
|
|
|
# Define tools
|
|
|
-@Tool
|
|
|
+# evaluation_extraction_tool = Tool(
|
|
|
+# func=lambda request_id, query_word: _evaluation_extraction_tool(request_id, query_word),
|
|
|
+# name="evaluation_extraction_tool",
|
|
|
+# description="知识评估与抽取工具,用于处理数据库中的数据,执行评估并抽取内容"
|
|
|
+# )
|
|
|
+
|
|
|
+@tool
|
|
|
def evaluation_extraction_tool(request_id: str, query_word: str) -> str:
|
|
|
"""
|
|
|
知识评估与抽取工具。持续处理数据库中的数据,分批执行评估并创建KnowledgeExtractionContent对象。
|
|
@@ -36,56 +43,78 @@ def evaluation_extraction_tool(request_id: str, query_word: str) -> str:
|
|
|
Returns:
|
|
|
str: "success" 表示处理完成,"no data" 表示没有数据需要处理
|
|
|
"""
|
|
|
- try:
|
|
|
- db = SessionLocal()
|
|
|
+ # 使用上下文管理器自动管理数据库连接的生命周期
|
|
|
+ with SessionLocal() as db:
|
|
|
try:
|
|
|
# 使用新的批量处理函数
|
|
|
result = execute_continuous_evaluation_extraction(request_id, db, query_word)
|
|
|
return result
|
|
|
- finally:
|
|
|
- db.close()
|
|
|
- except Exception as e:
|
|
|
- logger.error(f"评估抽取过程中出错: {e}")
|
|
|
- return f"no data - 错误: {str(e)}"
|
|
|
+ except Exception as e:
|
|
|
+ # 确保发生异常时回滚事务
|
|
|
+ db.rollback()
|
|
|
+ logger.error(f"评估抽取过程中出错: {e}")
|
|
|
+ return f"no data - 错误: {str(e)}"
|
|
|
|
|
|
def execute_continuous_evaluation_extraction(request_id: str, db: Session, query_word: str) -> str:
|
|
|
"""持续执行评估循环,直到数据库没有数据"""
|
|
|
+ logger.info(f"开始处理,request_id: {request_id}, query_word: {query_word}")
|
|
|
+
|
|
|
total_processed = 0
|
|
|
+ offset = 0
|
|
|
|
|
|
- while True:
|
|
|
- # 分批获取待评估的内容
|
|
|
- contents = get_batch_contents_for_evaluation(request_id, db, BATCH_SIZE)
|
|
|
-
|
|
|
- if not contents:
|
|
|
- if total_processed > 0:
|
|
|
- logger.info(f"处理完成,共处理 {total_processed} 条内容")
|
|
|
- return "success"
|
|
|
- return "no data"
|
|
|
-
|
|
|
- # 批量评估内容并创建KnowledgeExtractionContent对象
|
|
|
- evaluation_results = batch_evaluate_content(contents, db, request_id, query_word)
|
|
|
-
|
|
|
- # 对评分大于阈值的内容进行抽取
|
|
|
- high_score_results = [result for result in evaluation_results if result["score"] >= SCORE_THRESHOLD]
|
|
|
- if high_score_results:
|
|
|
- logger.info(f"发现 {len(high_score_results)} 条高分内容,进行抽取")
|
|
|
- batch_extract_and_save_content(high_score_results, db, request_id, query_word)
|
|
|
-
|
|
|
- total_processed += len(contents)
|
|
|
- db.commit()
|
|
|
+ try:
|
|
|
+ while True:
|
|
|
+ # 分批获取待评估的内容,使用offset实现分页
|
|
|
+ contents = get_batch_contents_for_evaluation(request_id, db, BATCH_SIZE, offset)
|
|
|
+
|
|
|
+ logger.info(f"获取到 {len(contents)} 条待评估内容")
|
|
|
+
|
|
|
+ if not contents:
|
|
|
+ if total_processed > 0:
|
|
|
+ logger.info(f"处理完成,共处理 {total_processed} 条内容")
|
|
|
+ db.commit() # 确保最后一批数据被提交
|
|
|
+ return "success"
|
|
|
+ return "no data"
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 批量评估内容并创建KnowledgeExtractionContent对象
|
|
|
+ evaluation_results = batch_evaluate_content(contents, db, request_id, query_word)
|
|
|
+
|
|
|
+ print(f"""evaluation_results: {evaluation_results}""")
|
|
|
+
|
|
|
+ # 对评分大于阈值的内容进行抽取
|
|
|
+ high_score_results = [result for result in evaluation_results if result["score"] >= SCORE_THRESHOLD]
|
|
|
+ if high_score_results:
|
|
|
+ logger.info(f"发现 {len(high_score_results)} 条高分内容,进行抽取")
|
|
|
+ batch_extract_and_save_content(high_score_results, db, request_id, query_word)
|
|
|
+
|
|
|
+ total_processed += len(contents)
|
|
|
+ offset += len(contents) # 更新offset值,以便下次获取下一批数据
|
|
|
+ db.commit() # 每批次处理完成后提交事务
|
|
|
+ except Exception as e:
|
|
|
+ # 当前批次处理失败时回滚事务
|
|
|
+ db.rollback()
|
|
|
+ logger.error(f"处理批次数据时出错: {e}")
|
|
|
+ # 继续处理下一批数据
|
|
|
+ offset += len(contents)
|
|
|
+ except Exception as e:
|
|
|
+ # 发生严重异常时回滚事务并抛出异常
|
|
|
+ db.rollback()
|
|
|
+ logger.error(f"执行评估抽取循环时出错: {e}")
|
|
|
+ raise
|
|
|
# 这里的代码永远不会被执行到,因为在while循环中,当contents为空时会返回
|
|
|
|
|
|
-def get_batch_contents_for_evaluation(request_id: str, db: Session, batch_size: int) -> list:
|
|
|
- """分批获取待评估的内容"""
|
|
|
- query = db.query(KnowledgeParsingContent).filter(
|
|
|
- KnowledgeParsingContent.status == 2 # 已完成提取的数据
|
|
|
+def get_batch_contents_for_evaluation(request_id: str, db: Session, batch_size: int, offset: int = 0) -> list:
|
|
|
+ query = db.query(KnowledgeParsingContent).outerjoin(
|
|
|
+ KnowledgeExtractionContent,
|
|
|
+ KnowledgeParsingContent.id == KnowledgeExtractionContent.parsing_id
|
|
|
+ ).filter(
|
|
|
+ KnowledgeParsingContent.status == 2, # 已完成提取的数据
|
|
|
+ KnowledgeParsingContent.request_id == request_id,
|
|
|
+ KnowledgeExtractionContent.parsing_id == None
|
|
|
)
|
|
|
|
|
|
- # 如果指定了request_id,则只处理该request_id的数据
|
|
|
- if request_id:
|
|
|
- query = query.filter(KnowledgeParsingContent.request_id == request_id)
|
|
|
-
|
|
|
- return query.limit(batch_size).all()
|
|
|
+ return query.offset(offset).limit(batch_size).all()
|
|
|
|
|
|
def batch_evaluate_content(contents: list, db: Session, request_id: str, query_word: str) -> list:
|
|
|
if not contents:
|
|
@@ -94,17 +123,17 @@ def batch_evaluate_content(contents: list, db: Session, request_id: str, query_w
|
|
|
try:
|
|
|
# 批量调用大模型进行评估
|
|
|
evaluation_results_raw = batch_call_llm_for_evaluation(contents, query_word)
|
|
|
-
|
|
|
+
|
|
|
# 处理评估结果
|
|
|
evaluation_results = []
|
|
|
|
|
|
- for i, (parsing_id, score, reason, parsing_data) in enumerate(evaluation_results_raw):
|
|
|
+ for i, (parsing_id, score, score_reason, parsing_data) in enumerate(evaluation_results_raw):
|
|
|
# 创建KnowledgeExtractionContent对象
|
|
|
extraction_content = KnowledgeExtractionContent(
|
|
|
request_id=request_id,
|
|
|
parsing_id=parsing_id,
|
|
|
score=score,
|
|
|
- reason=reason,
|
|
|
+ score_reason=score_reason,
|
|
|
create_at=datetime.now()
|
|
|
)
|
|
|
db.add(extraction_content)
|
|
@@ -112,7 +141,7 @@ def batch_evaluate_content(contents: list, db: Session, request_id: str, query_w
|
|
|
evaluation_results.append({
|
|
|
"parsing_id": parsing_id,
|
|
|
"score": score,
|
|
|
- "reason": reason,
|
|
|
+ "score_reason": score_reason,
|
|
|
"parsing_data": parsing_data,
|
|
|
"extraction_content": extraction_content
|
|
|
})
|
|
@@ -130,33 +159,43 @@ def batch_extract_and_save_content(evaluation_results: list, db: Session, reques
|
|
|
if not evaluation_results:
|
|
|
return []
|
|
|
|
|
|
- # 批量调用大模型进行抽取
|
|
|
- extraction_data_list = batch_call_llm_for_extraction(evaluation_results, query_word)
|
|
|
-
|
|
|
- # 保存抽取结果到数据库
|
|
|
- success_ids = []
|
|
|
- failed_ids = []
|
|
|
-
|
|
|
- for i, extraction_data in enumerate(extraction_data_list):
|
|
|
- try:
|
|
|
- evaluation_result = evaluation_results[i]
|
|
|
-
|
|
|
- # 更新已有对象的data字段和状态
|
|
|
- existing_extraction.data = evaluation_result["extraction_content"]
|
|
|
- existing_extraction.status = 2 # 处理完成
|
|
|
- success_ids.append(parsing_id)
|
|
|
- except Exception as e:
|
|
|
- logger.error(f"处理抽取结果 {i} 时出错: {e}")
|
|
|
- failed_ids.append(evaluation_results[i].get("parsing_id"))
|
|
|
-
|
|
|
- # 如果有失败的内容,将其标记为处理失败
|
|
|
- if failed_ids:
|
|
|
- logger.warning(f"有 {len(failed_ids)} 条内容抽取失败")
|
|
|
- for result in evaluation_results:
|
|
|
- if result.get("parsing_id") in failed_ids and "extraction_content" in result:
|
|
|
- result["extraction_content"].status = 3 # 处理失败
|
|
|
-
|
|
|
- return success_ids
|
|
|
+ try:
|
|
|
+ # 批量调用大模型进行抽取
|
|
|
+ extraction_data_list = batch_call_llm_for_extraction(evaluation_results, query_word)
|
|
|
+
|
|
|
+ # 保存抽取结果到数据库
|
|
|
+ success_ids = []
|
|
|
+ failed_ids = []
|
|
|
+
|
|
|
+ for i, (extracted_data, clean_reason) in enumerate(extraction_data_list):
|
|
|
+ try:
|
|
|
+ evaluation_result = evaluation_results[i]
|
|
|
+ parsing_id = evaluation_result.get("parsing_id")
|
|
|
+
|
|
|
+ if "extraction_content" in evaluation_result and parsing_id:
|
|
|
+ # 更新已有对象的data字段和状态
|
|
|
+ extraction_content = evaluation_result["extraction_content"]
|
|
|
+ extraction_content.data = extracted_data
|
|
|
+ extraction_content.clean_reason = clean_reason
|
|
|
+ extraction_content.status = 2 # 处理完成
|
|
|
+ success_ids.append(parsing_id)
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"处理抽取结果 {i} 时出错: {e}")
|
|
|
+ if i < len(evaluation_results):
|
|
|
+ failed_ids.append(evaluation_results[i].get("parsing_id"))
|
|
|
+
|
|
|
+ # 如果有失败的内容,将其标记为处理失败
|
|
|
+ if failed_ids:
|
|
|
+ logger.warning(f"有 {len(failed_ids)} 条内容抽取失败")
|
|
|
+ for result in evaluation_results:
|
|
|
+ if result.get("parsing_id") in failed_ids and "extraction_content" in result:
|
|
|
+ result["extraction_content"].status = 3 # 处理失败
|
|
|
+
|
|
|
+ return success_ids
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"批量抽取和保存内容时出错: {e}")
|
|
|
+ db.rollback() # 确保发生异常时回滚事务
|
|
|
+ return []
|
|
|
|
|
|
# 读取提示词文件
|
|
|
def read_prompt_file(file_path):
|
|
@@ -177,10 +216,8 @@ evaluation_prompt_path = os.path.join(project_root, 'prompt', 'evaluation.md')
|
|
|
extraction_prompt_path = os.path.join(project_root, 'prompt', 'extraction.md')
|
|
|
|
|
|
# 打印路径信息,用于调试
|
|
|
-logger.info(f"评估提示词路径: {evaluation_prompt_path}")
|
|
|
-logger.info(f"抽取提示词路径: {extraction_prompt_path}")
|
|
|
-
|
|
|
EVALUATION_PROMPT = read_prompt_file(evaluation_prompt_path)
|
|
|
+
|
|
|
EXTRACTION_PROMPT = read_prompt_file(extraction_prompt_path)
|
|
|
|
|
|
def batch_call_llm_for_evaluation(contents: list, query_word: str) -> list:
|
|
@@ -201,19 +238,14 @@ def batch_call_llm_for_evaluation(contents: list, query_word: str) -> list:
|
|
|
# 处理返回结果
|
|
|
evaluation_results = []
|
|
|
for i, result in enumerate(results):
|
|
|
+ result = re.sub(r'^\s*```json|\s*```\s*$', '', result, flags=re.MULTILINE).strip()
|
|
|
+ result = json.loads(result)
|
|
|
parsing_id = contents[i].id
|
|
|
- parsing_data = contents[i].parsing_data
|
|
|
-
|
|
|
- if isinstance(result, dict) and "score" in result:
|
|
|
- # 正常结果
|
|
|
- score = result.get("score", -2)
|
|
|
- reason = result.get("reason", "")
|
|
|
- else:
|
|
|
- # 异常结果
|
|
|
- score = -2
|
|
|
- reason = "评估失败"
|
|
|
+ parsing_data = contents[i].parsing_data
|
|
|
+ score = result.get("score", -2)
|
|
|
+ score_reason = result.get("reason", "")
|
|
|
|
|
|
- evaluation_results.append((parsing_id, score, reason, parsing_data))
|
|
|
+ evaluation_results.append((parsing_id, score, score_reason, parsing_data))
|
|
|
|
|
|
return evaluation_results
|
|
|
|
|
@@ -231,7 +263,7 @@ def batch_call_llm_for_extraction(evaluation_results: list, query_word: str) ->
|
|
|
"query_word": query_word,
|
|
|
"content": parsing_data
|
|
|
})
|
|
|
-
|
|
|
+
|
|
|
try:
|
|
|
# 批量调用 Gemini 进行抽取
|
|
|
results = gemini_processor.batch_process(extraction_contents, EXTRACTION_PROMPT)
|
|
@@ -239,11 +271,12 @@ def batch_call_llm_for_extraction(evaluation_results: list, query_word: str) ->
|
|
|
# 处理返回结果
|
|
|
extraction_results = []
|
|
|
for i, result in enumerate(results):
|
|
|
- # 确保结果包含必要的字段
|
|
|
- if not isinstance(result, dict):
|
|
|
- result = {"extracted_data": str(result)}
|
|
|
-
|
|
|
- extraction_results.append(json.dumps(result, ensure_ascii=False))
|
|
|
+ result = re.sub(r'^\s*```json|\s*```\s*$', '', result, flags=re.MULTILINE).strip()
|
|
|
+ result = json.loads(result)
|
|
|
+ extracted_data = result.get("extracted_content", "未提取到内容")
|
|
|
+ clean_reason = result.get("analysis_reason", "未返回原因")
|
|
|
+
|
|
|
+ extraction_results.append((extracted_data, clean_reason))
|
|
|
|
|
|
return extraction_results
|
|
|
|