| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- from openai import OpenAI
- from ..schemas.base import DataResponse
- from ..core.config import get_settings
- from ..core.logger import get_logger
- from openai.types.chat import ChatCompletionToolParam
- import json
- settings = get_settings()
- logger = get_logger("understand_image_provider")
- SYSTEM_PROMPT = """
- <SystemPrompt>
- <角色>
- 你是一名资深广告文案专家。你的任务是根据输入的一张广告图片中的文字内容,生成一句简洁有力的广告文案。
- </角色>
- <受众>
- 目标用户:50岁以上中老年人。语言需亲切、直白、易理解,避免专业术语与复杂长句。
- </受众>
- <结构公式>
- [行动指令] + [低门槛/优惠承诺] + [核心价值/具体收益] + [紧迫感/稀缺性提醒]
- </结构公式>
- <约束>
- 1. 文案必须准确传达广告图片中的产品/服务信息,不得杜撰不存在的内容。
- 2. 加入紧迫感或稀缺性(如“限时”“名额有限”“马上领取”等),但不得虚构或夸大事实。
- 3. 避免医疗或功效的绝对化/保证性用语(如“治愈”“根治”“无副作用”“永久有效”)。
- 4. 不得包含违法、虚假、低俗、敏感、歧视性内容,不引导危险行为,不传播迷信。
- 5. 涉及健康/养生场景时,表述应为辅助/改善/建议性质,不承诺疗效;避免“祖传秘方”等违规表述。
- 6. 仅输出一句中文广告文案,简短醒目,适合作为宣传主标题。
- 7. 文案必须注意标点与短句分隔:动作、优惠承诺、核心收益之间用逗号分隔;紧迫感/稀缺性提醒用分号与前半部分隔开,避免把多个短语连写在一起,字数50字以内。
- </约束>
- <示例 few-shot="true">
- 长按二维码,0元入群,领取中医调理养生秘方;名额有限,赶快行动吧
- </示例>
- <输出要求>
- 始终通过工具调用(function calling)输出,参数仅包含生成的一句文案。
- </输出要求>
- </SystemPrompt>
- """
- tools: list[ChatCompletionToolParam] = [
- {
- "type": "function",
- "function": {
- "name": "generate_ocr_text",
- "description": "生成一句适合中老年用户的广告文案(遵循结构公式与约束)",
- "parameters": {
- "type": "object",
- "properties": {
- "ocr_text": {
- "type": "string",
- "description": "最终的一句广告文案(中文,简短醒目,合规)"
- }
- },
- "required": ["ocr_text"],
- "additionalProperties": False
- }
- }
- }
- ]
- class UnderstandImageProvider:
- print("UnderstandImageProvider called")
- def understand_image(self, image_url: str, *, model: str) -> DataResponse:
- client = OpenAI(
- api_key = settings.dashscope_api_key or "",
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- if not client:
- logger.error("OpenAI client is not initialized.")
- completion = client.chat.completions.create(
- model=model,
- messages=[
- {"role": "system", "content": SYSTEM_PROMPT},
- {
- "role": "user",
- "content": [{ "type": "image_url", "image_url": { "url": image_url } }],
- },
- ],
- tools=tools,
- tool_choice={
- "type": "function",
- "function": {"name": "generate_ocr_text"}
- },
- temperature=1.3
- )
- msg = completion.choices[0].message
- # Safely parse tool call arguments (if any)
- ocr_text = ""
- try:
- tool_calls = getattr(msg, "tool_calls", None) or []
- if tool_calls:
- call = tool_calls[0]
- arg_str = getattr(getattr(call, "function", None), "arguments", None)
- if isinstance(arg_str, str) and arg_str.strip():
- args = json.loads(arg_str)
- if isinstance(args, dict):
- ocr_text = str(args.get("ocr_text", "")).strip()
- except Exception as e:
- logger.error("parse tool call failed: %s", e, exc_info=True)
- # Fallback: if no tool-calls returned, try to read text content
- content = getattr(msg, "content", None)
- if not ocr_text and isinstance(content, str):
- ocr_text = content.strip()
- print("✅ OCR_TEXT:\n", ocr_text)
- return DataResponse(code=200, data=ocr_text, msg="Image understood successfully")
-
|