| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- from openai import OpenAI
- from ..schemas.base import DataResponse, CopywritingEvaluationPayload
- from ..core.config import get_settings
- from ..core.logger import get_logger
- from openai.types.chat import ChatCompletionToolParam
- import json
- settings = get_settings()
- logger = get_logger("evaluation_provider")
- SYSTEM_PROMPT = """
- <SystemPrompt>
- <角色>
- 你是一名广告文案质检与优化专家。你的任务是:
- 1. 根据输入的广告图片文字(OCR结果)和现有文案,判断该文案是否符合广告规范;
- 2. 当文案不符合规则时,说明原因并自动生成一条修改后的合格文案;
- 3. 当文案符合规则时,直接通过校验。
- </角色>
- <校验标准>
- 1. 结构要求:
- - 文案应符合公式:[行动指令],[低门槛/优惠承诺],[核心价值/具体收益];[紧迫感/稀缺性提醒]。
- - 行动指令(可选):长按二维码 / 扫码二维码 / 识别二维码 / 点击领取 / 立即添加。
- - 低门槛/优惠承诺(可选):0元入群 / 免费进群 / 0元领取 / 限时免费加入。
- - 核心价值/具体收益(必有):例如“领取中医调理养生课程”“获取控糖方案”“享受健康调理建议”。
- - 紧迫感/稀缺性提醒(必有):例如“名额有限”“限时”“马上领取”“赶快行动”。
- - 全句 ≤ 50 字。
- 2. 内容一致性:
- - 核心价值必须与广告图片(OCR文字)中的信息一致。
- - 不得编造图片中不存在的优惠、产品或服务。
- 3. 容错规则:
- - 若语义顺序正确,即使标点略有不同(如逗号/分号混用),也视为合格;
- - 若“领取”“获取”等动词与核心价值(如“课程”“方案”“资料”)语义连贯,则不因词间逗号缺失判为不合格;
- - 标点仅作可读性参考,不作否决条件。
- </校验标准>
- <修正规则>
- - 当校验不通过时,应生成一条符合以下条件的新文案:
- 1. 按结构公式输出;
- 2. 语义清晰,逻辑顺畅;
- 3. 保持与图片(OCR文本)内容一致;
- 4. 尽量保留原文中的核心要素,调整结构与表达使其合规;
- 5. 输出的修正文案需是可直接使用的最终版本。
- </修正规则>
- <判定逻辑>
- - 若文案语义完整、符合结构且内容与图片一致 → pass=true,reason="",corrected_copy="";
- - 若轻微偏差(如分号缺失、字数略超) → pass=true,reason="建议优化:…",corrected_copy=优化后的文案;
- - 若结构明显错误或与图片内容不一致 → pass=false,reason=具体问题描述,corrected_copy=修改后的合格文案。
- </判定逻辑>
- <输出要求>
- 始终调用函数 check_ad_copy,输出格式如下:
- {
- "pass": true/false,
- "reason": "若不通过写原因;若通过则为空字符串或给出优化建议",
- "corrected_copy": "最终合格的一句广告文案(若原文案合格则与原文一致)"
- }
- </输出要求>
- </SystemPrompt>
- """
- tools: list[ChatCompletionToolParam] = [
- {
- "type": "function",
- "function": {
- "name": "check_ad_copy",
- "description": "校验并在必要时修正广告文案,确保结构与内容合规",
- "parameters": {
- "type": "object",
- "properties": {
- "pass": { "type": "boolean" },
- "reason": { "type": "string" },
- "corrected_copy": { "type": "string" }
- },
- "required": ["pass", "reason", "corrected_copy"],
- "additionalProperties": False
- }
- }
- }
- ]
- class EvaluationProvider:
- print("EvaluationProvider called")
- def copywriting_evaluation(self, image_url: str, text: str, model: str) -> DataResponse:
- client = OpenAI(
- api_key = settings.dashscope_api_key or "",
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- if not client:
- logger.error("OpenAI client is not initialized.")
- return DataResponse(code=1, data=None, msg=f"OpenAI client is not initialized")
-
- completion = client.chat.completions.create(
- model=model,
- messages=[
- {"role": "system", "content": SYSTEM_PROMPT},
- {
- "role": "user",
- "content": [
- {"type": "image_url", "image_url": {"url": image_url}},
- {"type": "text", "text": text}
- ],
- },
- ],
- tools=tools,
- tool_choice={
- "type": "function",
- "function": {"name": "check_ad_copy"}
- },
- temperature=0.3
- )
- msg = completion.choices[0].message
- print(msg)
- # Safely parse tool call arguments (if any)
- content = True
- reason = ""
- corrected_msg = ""
- try:
- tool_calls = getattr(msg, "tool_calls", None) or []
- if tool_calls:
- call = tool_calls[0]
- arg_str = getattr(getattr(call, "function", None), "arguments", None)
- if isinstance(arg_str, str) and arg_str.strip():
- args = json.loads(arg_str)
- if isinstance(args, dict):
- content = bool(args.get("pass", True))
- reason = str(args.get("reason", "")).strip()
- corrected_msg = str(args.get("corrected_copy", "")).strip()
- except Exception as e:
- logger.error("parse tool call failed: %s", e, exc_info=True)
- return DataResponse(code=1, data=None, msg=f"parse tool call failed: {e}")
- print("✅ PASS:\n", content)
- print("✅ REASON:\n", reason)
- return DataResponse(code=0, data=CopywritingEvaluationPayload(content=content, reason=reason, corrected_msg=corrected_msg), msg="success")
|