| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- from openai import OpenAI
- from ..schemas.base import DataResponse, CopywritingEvaluationPayload
- from ..core.config import get_settings
- from ..core.logger import get_logger
- from openai.types.chat import ChatCompletionToolParam
- import json
- settings = get_settings()
- logger = get_logger("evaluation_provider")
- SYSTEM_PROMPT = """
- <SystemPrompt>
- <角色>
- 你是一名广告文案质检与优化专家。你的任务是:
- 1. 根据输入的广告图片文字(OCR结果)和广告文案,对文案进行校验;
- 2. 当文案不符合规则时,给出具体原因(reason),并根据这些问题自动修正文案;
- 3. 当文案符合规则时,直接通过;
- 4. 最终输出校验状态与合格文案。
- </角色>
- <校验标准>
- 1. 结构要求(只看语义组成,不看标点):
- - 文案语义上应包含以下要素:
- a. 行动指令(可选):长按二维码 / 扫码二维码 / 识别二维码 / 点击领取 / 立即添加;
- b. 低门槛或优惠承诺(可选):0元入群 / 免费进群 / 0元加入 / 限时免费加入;
- c. 核心价值/具体收益(必有):例如“领取中医调理养发方案”“获取控糖建议”“享受养生课程”等;
- d. 紧迫感/稀缺性提醒(必有):例如“名额有限”“限时”“马上领取”“赶快行动”等;
- - 只要语义上具备这些组成部分即可,不因标点、顺序或语气词差异判不合格。
- 2. 内容一致性要求:
- - 文案的核心价值必须与广告图片(OCR文字)内容一致;
- - 优惠、产品/服务、动作入口等信息必须在图片中能找到对应要素;
- - 不得凭空编造页面中不存在的内容。
- 3. 逻辑合理性:
- - 文案应语义连贯,表达完整,无逻辑冲突。
- </校验标准>
- <修正规则>
- - 当文案未通过校验时,应严格根据 reason 中列出的问题逐条修复:
- 1. 阅读 reason,识别缺失或错误的要素;
- 2. 在修正文案中补充或修改这些要素;
- 3. 确保修正后的文案:
- - 符合公式 [行动指令],[低门槛/优惠承诺],[核心价值/具体收益];[紧迫感/稀缺性提醒];
- - 保持与图片(OCR结果)内容一致;
- - 语义自然、逻辑通顺;
- 4. 不可仅复述原文;修正文案必须显式解决 reason 指出的所有问题。
- - 修正完成后,应重新验证:
- - 若问题已解决,返回合格结果;
- - 若问题仍存在,则继续修正,直至完全合格。
- </修正规则>
- <判定逻辑>
- - 若文案语义完整、内容一致 → pass=true,reason="",corrected_copy="";
- - 若存在轻微偏差(结构略乱或词序不同但语义正确) → pass=true,reason=问题说明,corrected_copy=优化后版本;
- - 若存在严重问题(缺少核心价值或与图片内容不符) → pass=false,reason=问题说明(简单说明),corrected_copy=修正后合格文案;
- - 修正文案应完整保留图片中的核心卖点信息。
- </判定逻辑>
- <输出要求>
- 始终调用函数 check_ad_copy,输出格式如下:
- {
- "pass": true/false,
- "reason": "若不通过写原因;若通过则为空字符串或给出优化建议",
- "corrected_copy": "最终合格的一句广告文案(若原文合格则为原文)"
- }
- </输出要求>
- <示例>
- 输入OCR:"0元入群领取改善发质方案"
- 输入文案:"长按二维码,0元入群,领取中医调理养发方案;名额有限,马上行动!"
- reason:"核心价值与图片不一致,未体现‘改善发质’"
- 修正输出:
- {
- "pass": true,
- "reason": "",
- "corrected_copy": "长按二维码,0元入群,领取中医调理改善发质方案;名额有限,马上行动!"
- }
- </示例>
- </SystemPrompt>
- """
- tools: list[ChatCompletionToolParam] = [
- {
- "type": "function",
- "function": {
- "name": "check_ad_copy",
- "description": "校验并在必要时修正广告文案,确保结构与内容合规",
- "parameters": {
- "type": "object",
- "properties": {
- "pass": { "type": "boolean" },
- "reason": { "type": "string" },
- "corrected_copy": { "type": "string" }
- },
- "required": ["pass", "reason", "corrected_copy"],
- "additionalProperties": False
- }
- }
- }
- ]
- class EvaluationProvider:
- print("EvaluationProvider called")
- def copywriting_evaluation(self, image_url: str, text: str, model: str) -> DataResponse:
- client = OpenAI(
- api_key = settings.dashscope_api_key or "",
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- )
- if not client:
- logger.error("OpenAI client is not initialized.")
- return DataResponse(code=1, data=None, msg=f"OpenAI client is not initialized")
-
- completion = client.chat.completions.create(
- model=model,
- messages=[
- {"role": "system", "content": SYSTEM_PROMPT},
- {
- "role": "user",
- "content": [
- {"type": "image_url", "image_url": {"url": image_url}},
- {"type": "text", "text": text}
- ],
- },
- ],
- tools=tools,
- tool_choice={
- "type": "function",
- "function": {"name": "check_ad_copy"}
- },
- temperature=0.3
- )
- msg = completion.choices[0].message
- print(msg)
- # Safely parse tool call arguments (if any)
- content = True
- reason = ""
- corrected_msg = ""
- try:
- tool_calls = getattr(msg, "tool_calls", None) or []
- if tool_calls:
- call = tool_calls[0]
- arg_str = getattr(getattr(call, "function", None), "arguments", None)
- if isinstance(arg_str, str) and arg_str.strip():
- args = json.loads(arg_str)
- if isinstance(args, dict):
- content = bool(args.get("pass", True))
- reason = str(args.get("reason", "")).strip()
- corrected_msg = str(args.get("corrected_copy", "")).strip()
- except Exception as e:
- logger.error("parse tool call failed: %s", e, exc_info=True)
- return DataResponse(code=1, data=None, msg=f"parse tool call failed: {e}")
- print("✅ PASS:\n", content)
- print("✅ REASON:\n", reason)
- return DataResponse(code=0, data=CopywritingEvaluationPayload(content=content, reason=reason, corrected_msg=corrected_msg), msg="success")
|