from openai import OpenAI from ..schemas.base import DataResponse, CopywritingEvaluationPayload from ..core.config import get_settings from ..core.logger import get_logger from openai.types.chat import ChatCompletionToolParam import json settings = get_settings() logger = get_logger("evaluation_provider") SYSTEM_PROMPT = """ <角色> 你是一名广告文案质检与优化专家。你的任务是: 1. 根据输入的广告图片文字(OCR结果)和广告文案,对文案进行校验; 2. 当文案不符合规则时,说明原因并自动修正文案; 3. 当文案符合规则时,直接通过; 4. 最终输出校验状态与合格文案。 <校验标准> 1. 结构要求: - 文案语义上应包含以下要素: a. 行动指令(可选):长按二维码 / 扫码二维码 / 识别二维码 / 点击领取 / 立即添加; b. 低门槛或优惠承诺(可选):0元入群 / 免费进群 / 0元领取 / 限时免费加入; c. 核心价值/具体收益(必有):如“领取/获取/享受 + {方案/资料/课程/建议/秘方等}”; d. 紧迫感/稀缺性提醒(必有):如“名额有限”“限时”“马上行动”“赶快领取”; - 只要求语义具备这些要素,不严格要求标点或词序。 2. 内容一致性(优化版): - 文案核心价值应与广告图片(OCR文字)**语义一致**; - 允许表达层面的同义替换、语义扩展或强化(如“领取改善发质方案”→“获取专业养发调理方案”视为一致); - 仅当文案引入图片中完全不存在的核心要素(如新增产品、服务、功效)时,才视为不一致; - 若表达中存在轻微改写但不改变原意,应视为通过。 3. 逻辑合理性: - 文案应语义自然、逻辑连贯,无明显矛盾。 <修正规则> - 当文案未通过校验时,阅读 reason 并逐条修复; - 修正应尽量保留原文的语义与营销力,仅调整结构或措辞使其合格; - 生成的新文案应: 1. 符合结构公式:[行动指令],[低门槛/优惠承诺],[核心价值/具体收益];[紧迫感/稀缺性提醒]; 2. 与图片内容语义一致(允许合理同义、表达优化); 3. 不新增图片中完全没有的概念或信息; 4. 语义自然顺畅,字数 ≤ 50。 <判定逻辑> - 若文案语义完整、结构正确、内容与图片语义一致 → pass=true,reason="",corrected_copy=原文; - 若仅轻微表达差异(同义改写、修辞不同) → pass=true,reason="建议优化:轻微表达差异",corrected_copy=原文; - 若结构或内容存在重大问题 → pass=false,reason=问题说明,corrected_copy=修正后合格版本。 <输出要求> 始终调用函数 check_ad_copy,输出格式如下: { "pass": true/false, "reason": "说明原因或留空", "corrected_copy": "最终合格的一句广告文案(若原文合格则为原文)" } <示例> 输入OCR:"0元改善发质,领取改善发质方案" 输入文案:"长按二维码,0元改善发质,获取专业养发调理方案;名额有限,立即行动!" reason:"轻微表达差异,不影响语义一致性" 输出: { "pass": true, "reason": "", "corrected_copy": "长按二维码,0元改善发质,获取专业养发调理方案;名额有限,立即行动!" } """ tools: list[ChatCompletionToolParam] = [ { "type": "function", "function": { "name": "check_ad_copy", "description": "校验并在必要时修正广告文案,确保结构与内容合规", "parameters": { "type": "object", "properties": { "pass": { "type": "boolean" }, "reason": { "type": "string" }, "corrected_copy": { "type": "string" } }, "required": ["pass", "reason", "corrected_copy"], "additionalProperties": False } } } ] class EvaluationProvider: print("EvaluationProvider called") def copywriting_evaluation(self, image_url: str, text: str, model: str) -> DataResponse: client = OpenAI( api_key = settings.dashscope_api_key or "", base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) if not client: logger.error("OpenAI client is not initialized.") return DataResponse(code=1, data=None, msg=f"OpenAI client is not initialized") completion = client.chat.completions.create( model=model, messages=[ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": image_url}}, {"type": "text", "text": text} ], }, ], tools=tools, tool_choice={ "type": "function", "function": {"name": "check_ad_copy"} }, temperature=0.3 ) msg = completion.choices[0].message print(msg) # Safely parse tool call arguments (if any) content = True reason = "" corrected_msg = "" try: tool_calls = getattr(msg, "tool_calls", None) or [] if tool_calls: call = tool_calls[0] arg_str = getattr(getattr(call, "function", None), "arguments", None) if isinstance(arg_str, str) and arg_str.strip(): args = json.loads(arg_str) if isinstance(args, dict): content = bool(args.get("pass", True)) reason = str(args.get("reason", "")).strip() corrected_msg = str(args.get("corrected_copy", "")).strip() except Exception as e: logger.error("parse tool call failed: %s", e, exc_info=True) return DataResponse(code=1, data=None, msg=f"parse tool call failed: {e}") print("✅ PASS:\n", content) print("✅ REASON:\n", reason) return DataResponse(code=0, data=CopywritingEvaluationPayload(content=content, reason=reason, corrected_msg=corrected_msg), msg="success")