app.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. import os
  2. import tempfile
  3. import face_recognition
  4. import requests
  5. import logging
  6. from flask import Flask, request, jsonify, json
  7. def create_app():
  8. app = Flask(__name__)
  9. def init_app():
  10. known_faces_dir = "./known_faces"
  11. load_known_faces(known_faces_dir)
  12. init_app()
  13. @app.route('/')
  14. def index(): # put application's code here
  15. return 'OK'
  16. @app.route('/recognize/url', methods=['POST'])
  17. def recognize_url():
  18. if 'url' not in request.json:
  19. return jsonify({'error': 'No URL provided'}), 400
  20. url = request.json.get('url')
  21. if not url:
  22. return jsonify({'error': 'Invalid URL'}), 400
  23. try:
  24. # 从 URL 下载文件
  25. response = requests.get(url)
  26. if response.status_code != 200:
  27. return jsonify({'error': 'Failed to download image from URL'}), 400
  28. # 创建一个临时文件保存下载的文件
  29. temp_file = tempfile.NamedTemporaryFile(delete=False)
  30. temp_file.write(response.content)
  31. temp_file.close()
  32. find = find_faces_in_image(temp_file.name, url)
  33. os.remove(temp_file.name) # 删除临时文件
  34. results = return_json(find)
  35. return results
  36. except Exception as e:
  37. return jsonify({'error': str(e)}), 500
  38. @app.route('/recognize/file', methods=['POST'])
  39. def recognize_file():
  40. if 'file' not in request.files:
  41. return jsonify({'error': 'No file part'}), 400
  42. file = request.files['file']
  43. if file.filename == '':
  44. return jsonify({'error': 'No selected file'}), 400
  45. if file:
  46. # 创建一个临时文件保存上传的文件
  47. temp_file = tempfile.NamedTemporaryFile(delete=False)
  48. file.save(temp_file.name)
  49. find = find_faces_in_image(temp_file.name, file.filename)
  50. os.remove(temp_file.name)# 删除临时文件
  51. results = return_json(find)
  52. return results
  53. return jsonify({'error': 'An error occurred'}), 500
  54. return app
  55. # 调用 setup_logging 函数创建并配置日志记录器
  56. def setup_logging():
  57. # 创建一个 Logger 对象
  58. logger = logging.getLogger('sensitive-face-recognizer_logger')
  59. # 设置日志级别,可根据需要调整为 DEBUG、INFO、WARNING、ERROR 或 CRITICAL
  60. logger.setLevel(logging.INFO)
  61. # 创建一个 Handler 对象,这里使用 StreamHandler 输出到控制台
  62. console_handler = logging.StreamHandler()
  63. # 创建一个文件处理器,输出到文件
  64. file_handler = logging.FileHandler('app.log')
  65. # 创建一个 Formatter 对象,设置日志格式
  66. formatter = logging.Formatter('%(levelname)s - %(message)s')
  67. console_handler.setFormatter(formatter)
  68. file_handler.setFormatter(formatter)
  69. # 将 Handler 添加到 Logger 中
  70. logger.addHandler(console_handler)
  71. logger.addHandler(file_handler)
  72. return logger
  73. logger = setup_logging()
  74. def return_json(find):
  75. result = {
  76. "code": 0,
  77. "msg": "success",
  78. "data": None, # 将 data 初始化为 None
  79. "success": True
  80. }
  81. if find:
  82. result["data"] = {"find_face_status": 1}
  83. else:
  84. result["data"] = {"find_face_status": 2}
  85. json_result = json.dumps(result)
  86. return json_result
  87. # 全局变量存储已知人脸编码和名称
  88. known_face_encodings = []
  89. known_face_names = []
  90. def load_known_faces(known_faces_dir):
  91. global known_face_encodings, known_face_names
  92. known_face_encodings = []
  93. known_face_names = []
  94. for filename in os.listdir(known_faces_dir):
  95. if filename.endswith(".jpg") or filename.endswith(".png"):
  96. image_path = os.path.join(known_faces_dir, filename)
  97. image = face_recognition.load_image_file(image_path)
  98. face_encoding = face_recognition.face_encodings(image)[0]
  99. known_face_encodings.append(face_encoding)
  100. known_face_names.append(os.path.splitext(filename)[0])
  101. def get_face_similarity(known_face_encoding, face_encoding):
  102. # 计算两张脸的面部编码之间的距离
  103. face_distances = face_recognition.face_distance([known_face_encoding], face_encoding)
  104. # 计算相似度,使用 1 - 距离作为相似度
  105. similarity = 1 - face_distances
  106. return similarity
  107. def find_faces_in_image(image_path, url):
  108. image = face_recognition.load_image_file(image_path)
  109. face_locations = face_recognition.face_locations(image)
  110. face_encodings = face_recognition.face_encodings(image, face_locations)
  111. found_faces = []
  112. for face_encoding in face_encodings:
  113. matches = face_recognition.compare_faces(known_face_encodings, face_encoding, tolerance=0.35)
  114. if True in matches:
  115. first_match_index = matches.index(True)
  116. name = known_face_names[first_match_index]
  117. found_faces.append(name)
  118. known_face_encoding = known_face_encodings[first_match_index]
  119. similarity = get_face_similarity(known_face_encoding, face_encoding)
  120. logger.info(f'image_name={name} similarity={similarity} url={url}')
  121. if found_faces:
  122. return True
  123. else:
  124. return False
  125. if __name__ == '__main__':
  126. app = create_app()
  127. app.run(host='0.0.0.0', port=5000)