server.py 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. import asyncio
  2. import json
  3. from typing import Any, Dict, List
  4. import mcp.types as types
  5. from mcp.server.lowlevel import Server
  6. from applications.resource import get_resource_manager
  7. from applications.utils.chat import RAGChatAgent
  8. from applications.utils.mysql import ChatResult
  9. from applications.utils.spider.study import study
  10. from routes.buleprint import query_search
  11. def create_mcp_server() -> Server:
  12. """创建并配置MCP服务器"""
  13. app = Server("mcp-rag-server")
  14. @app.call_tool()
  15. async def call_tool(
  16. name: str, arguments: Dict[str, Any]
  17. ) -> List[types.TextContent]:
  18. """处理工具调用"""
  19. # ctx = app.request_context
  20. if name == "rag-search":
  21. data = await rag_search(arguments["query_text"])
  22. result = json.dumps(data, ensure_ascii=False, indent=2)
  23. else:
  24. raise ValueError(f"Unknown tool: {name}")
  25. return [types.TextContent(type="text", text=result)]
  26. @app.list_tools()
  27. async def list_tools() -> List[types.Tool]:
  28. return [
  29. types.Tool(
  30. name="rag-search",
  31. title="RAG搜索",
  32. description="搜索内容并生成总结",
  33. inputSchema={
  34. "type": "object",
  35. "properties": {
  36. "query_text": {
  37. "type": "string",
  38. "description": "用户输入的查询文本",
  39. }
  40. },
  41. "required": ["query_text"], # 只强制 query_text 必填
  42. "additionalProperties": False,
  43. },
  44. ),
  45. ]
  46. return app
  47. async def rag_search(query_text: str):
  48. dataset_id_strs = "11,12"
  49. dataset_ids = dataset_id_strs.split(",")
  50. search_type = "hybrid"
  51. query_results = await query_search(
  52. query_text=query_text,
  53. filters={"dataset_id": dataset_ids},
  54. search_type=search_type,
  55. )
  56. resource = get_resource_manager()
  57. chat_result_mapper = ChatResult(resource.mysql_client)
  58. rag_chat_agent = RAGChatAgent()
  59. chat_result = await rag_chat_agent.chat_with_deepseek(query_text, query_results)
  60. study_task_id = None
  61. if chat_result["status"] == 0:
  62. study_task_id = study(query_text)['task_id']
  63. llm_search_result = await rag_chat_agent.llm_search(query_text)
  64. decision = await rag_chat_agent.make_decision(chat_result, llm_search_result)
  65. data = {
  66. "result": decision["result"],
  67. "status": decision["status"],
  68. "relevance_score": decision["relevance_score"],
  69. }
  70. await chat_result_mapper.insert_chat_result(
  71. query_text,
  72. dataset_id_strs,
  73. json.dumps(query_results, ensure_ascii=False),
  74. chat_result["summary"],
  75. chat_result["relevance_score"],
  76. chat_result["status"],
  77. llm_search_result["answer"],
  78. llm_search_result["source"],
  79. llm_search_result["status"],
  80. decision["result"],
  81. study_task_id
  82. )
  83. return data