buleprint.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. import asyncio
  2. import traceback
  3. import uuid
  4. from typing import Dict, Any
  5. from quart import Blueprint, jsonify, request
  6. from quart_cors import cors
  7. from applications.config import (
  8. DEFAULT_MODEL,
  9. LOCAL_MODEL_CONFIG,
  10. ChunkerConfig,
  11. BASE_MILVUS_SEARCH_PARAMS,
  12. )
  13. from applications.resource import get_resource_manager
  14. from applications.api import get_basic_embedding
  15. from applications.api import get_img_embedding
  16. from applications.async_task import ChunkEmbeddingTask, DeleteTask
  17. from applications.search import HybridSearch
  18. from applications.utils.chat import ChatClassifier
  19. from applications.utils.mysql import Dataset, Contents, ContentChunks
  20. server_bp = Blueprint("api", __name__, url_prefix="/api")
  21. server_bp = cors(server_bp, allow_origin="*")
  22. @server_bp.route("/embed", methods=["POST"])
  23. async def embed():
  24. body = await request.get_json()
  25. text = body.get("text")
  26. model_name = body.get("model", DEFAULT_MODEL)
  27. if not LOCAL_MODEL_CONFIG.get(model_name):
  28. return jsonify({"error": "error model"})
  29. embedding = await get_basic_embedding(text, model_name)
  30. return jsonify({"embedding": embedding})
  31. @server_bp.route("/img_embed", methods=["POST"])
  32. async def img_embed():
  33. body = await request.get_json()
  34. url_list = body.get("url_list")
  35. if not url_list:
  36. return jsonify({"error": "error url_list"})
  37. embedding = await get_img_embedding(url_list)
  38. return jsonify(embedding)
  39. @server_bp.route("/delete", methods=["POST"])
  40. async def delete():
  41. body = await request.get_json()
  42. level = body.get("level")
  43. params = body.get("params")
  44. if not level or not params:
  45. return jsonify({"error": "error level or params"})
  46. resource = get_resource_manager()
  47. delete_task = DeleteTask(resource)
  48. response = await delete_task.deal(level, params)
  49. return jsonify(response)
  50. @server_bp.route("/chunk", methods=["POST"])
  51. async def chunk():
  52. body = await request.get_json()
  53. text = body.get("text", "")
  54. text = text.strip()
  55. if not text:
  56. return jsonify({"error": "error text"})
  57. resource = get_resource_manager()
  58. doc_id = f"doc-{uuid.uuid4()}"
  59. chunk_task = ChunkEmbeddingTask(
  60. resource.mysql_client,
  61. resource.milvus_client,
  62. cfg=ChunkerConfig(),
  63. doc_id=doc_id,
  64. es_pool=resource.es_client,
  65. )
  66. doc_id = await chunk_task.deal(body)
  67. return jsonify({"doc_id": doc_id})
  68. @server_bp.route("/search", methods=["POST"])
  69. async def search():
  70. """
  71. filters: Dict[str, Any], # 条件过滤
  72. query_vec: List[float], # query 的向量
  73. anns_field: str = "vector_text", # query指定的向量空间
  74. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  75. query_text: str = None, #是否通过 topic 倒排
  76. _source=False, # 是否返回元数据
  77. es_size: int = 10000, #es 第一层过滤数量
  78. sort_by: str = None, # 排序
  79. milvus_size: int = 10 # milvus粗排返回数量
  80. :return:
  81. """
  82. body = await request.get_json()
  83. # 解析数据
  84. search_type: str = body.get("search_type")
  85. filters: Dict[str, Any] = body.get("filters", {})
  86. anns_field: str = body.get("anns_field", "vector_text")
  87. search_params: Dict[str, Any] = body.get("search_params", BASE_MILVUS_SEARCH_PARAMS)
  88. query_text: str = body.get("query_text")
  89. _source: bool = body.get("_source", False)
  90. es_size: int = body.get("es_size", 10000)
  91. sort_by: str = body.get("sort_by")
  92. milvus_size: int = body.get("milvus", 20)
  93. limit: int = body.get("limit", 10)
  94. if not query_text:
  95. return jsonify({"error": "error query_text"})
  96. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  97. resource = get_resource_manager()
  98. search_engine = HybridSearch(
  99. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  100. )
  101. try:
  102. match search_type:
  103. case "base":
  104. response = await search_engine.base_vector_search(
  105. query_vec=query_vector,
  106. anns_field=anns_field,
  107. search_params=search_params,
  108. limit=limit,
  109. )
  110. return jsonify(response), 200
  111. case "hybrid":
  112. response = await search_engine.hybrid_search(
  113. filters=filters,
  114. query_vec=query_vector,
  115. anns_field=anns_field,
  116. search_params=search_params,
  117. es_size=es_size,
  118. sort_by=sort_by,
  119. milvus_size=milvus_size,
  120. )
  121. return jsonify(response), 200
  122. case "strategy":
  123. return jsonify({"error": "strategy not implemented"}), 405
  124. case _:
  125. return jsonify({"error": "error search_type"}), 200
  126. except Exception as e:
  127. return jsonify({"error": str(e), "traceback": traceback.format_exc()}), 500
  128. @server_bp.route("/dataset/list", methods=["GET"])
  129. async def dataset_list():
  130. resource = get_resource_manager()
  131. datasets = await Dataset(resource.mysql_client).select_dataset()
  132. # 创建所有任务
  133. tasks = [
  134. Contents(resource.mysql_client).select_count(dataset["id"])
  135. for dataset in datasets
  136. ]
  137. counts = await asyncio.gather(*tasks)
  138. # 组装数据
  139. data_list = [
  140. {
  141. "dataset_id": dataset["id"],
  142. "name": dataset["name"],
  143. "count": count,
  144. "created_at": dataset["created_at"].strftime("%Y-%m-%d"),
  145. }
  146. for dataset, count in zip(datasets, counts)
  147. ]
  148. return jsonify({
  149. "status_code": 200,
  150. "detail": "success",
  151. "data": data_list
  152. })
  153. @server_bp.route("/dataset/add", methods=["POST"])
  154. async def add_dataset():
  155. resource = get_resource_manager()
  156. dataset = Dataset(resource.mysql_client)
  157. # 从请求体里取参数
  158. body = await request.get_json()
  159. name = body.get("name")
  160. if not name:
  161. return jsonify({
  162. "status_code": 400,
  163. "detail": "name is required"
  164. })
  165. # 执行新增
  166. await dataset.add_dataset(name)
  167. return jsonify({
  168. "status_code": 200,
  169. "detail": "success"
  170. })
  171. @server_bp.route("/content/get", methods=["GET"])
  172. async def get_content():
  173. resource = get_resource_manager()
  174. contents = Contents(resource.mysql_client)
  175. # 获取请求参数
  176. doc_id = request.args.get("docId")
  177. if not doc_id:
  178. return jsonify({
  179. "status_code": 400,
  180. "detail": "doc_id is required",
  181. "data": {}
  182. })
  183. # 查询内容
  184. rows = await contents.select_content_by_doc_id(doc_id)
  185. if not rows:
  186. return jsonify({
  187. "status_code": 404,
  188. "detail": "content not found",
  189. "data": {}
  190. })
  191. row = rows[0]
  192. return jsonify({
  193. "status_code": 200,
  194. "detail": "success",
  195. "data": {
  196. "title": row.get("title", ""),
  197. "text": row.get("text", ""),
  198. "doc_id": row.get("doc_id", "")
  199. }
  200. })
  201. @server_bp.route("/content/list", methods=["GET"])
  202. async def content_list():
  203. resource = get_resource_manager()
  204. contents = Contents(resource.mysql_client)
  205. # 从 URL 查询参数获取分页和过滤参数
  206. page_num = int(request.args.get("page", 1))
  207. page_size = int(request.args.get("pageSize", 10))
  208. dataset_id = request.args.get("datasetId")
  209. doc_status = int(request.args.get("doc_status", 1))
  210. # order_by 可以用 JSON 字符串传递
  211. import json
  212. order_by_str = request.args.get("order_by", '{"id":"desc"}')
  213. try:
  214. order_by = json.loads(order_by_str)
  215. except Exception:
  216. order_by = {"id": "desc"}
  217. # 调用 select_contents,获取分页字典
  218. result = await contents.select_contents(
  219. page_num=page_num,
  220. page_size=page_size,
  221. dataset_id=dataset_id,
  222. doc_status=doc_status,
  223. order_by=order_by,
  224. )
  225. # 格式化 entities,只保留必要字段
  226. entities = [
  227. {
  228. "doc_id": row["doc_id"],
  229. "title": row.get("title") or "",
  230. "text": row.get("text") or "",
  231. }
  232. for row in result["entities"]
  233. ]
  234. return jsonify({
  235. "status_code": 200,
  236. "detail": "success",
  237. "data": {
  238. "entities": entities,
  239. "total_count": result["total_count"],
  240. "page": result["page"],
  241. "page_size": result["page_size"],
  242. "total_pages": result["total_pages"]
  243. }
  244. })
  245. async def query_search(query_text, filters=None, search_type='', anns_field='vector_text',
  246. search_params=BASE_MILVUS_SEARCH_PARAMS, _source=False, es_size=10000, sort_by=None,
  247. milvus_size=20, limit=10):
  248. if filters is None:
  249. filters = {}
  250. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  251. resource = get_resource_manager()
  252. search_engine = HybridSearch(
  253. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  254. )
  255. try:
  256. match search_type:
  257. case "base":
  258. response = await search_engine.base_vector_search(
  259. query_vec=query_vector,
  260. anns_field=anns_field,
  261. search_params=search_params,
  262. limit=limit,
  263. )
  264. return response
  265. case "hybrid":
  266. response = await search_engine.hybrid_search(
  267. filters=filters,
  268. query_vec=query_vector,
  269. anns_field=anns_field,
  270. search_params=search_params,
  271. es_size=es_size,
  272. sort_by=sort_by,
  273. milvus_size=milvus_size,
  274. )
  275. return response
  276. case "strategy":
  277. return None
  278. case _:
  279. return None
  280. except Exception as e:
  281. return None
  282. @server_bp.route("/query", methods=["GET"])
  283. async def query():
  284. query_text = request.args.get("query")
  285. dataset_ids = request.args.get("datasetIds").split(",")
  286. search_type = request.args.get("search_type", "hybrid")
  287. query_results = await query_search(query_text=query_text, filters={"dataset_id": dataset_ids},
  288. search_type=search_type)
  289. resource = get_resource_manager()
  290. content_chunk_mapper = ContentChunks(resource.mysql_client)
  291. dataset_mapper = Dataset(resource.mysql_client)
  292. res = []
  293. for result in query_results['results']:
  294. content_chunks = await content_chunk_mapper.select_chunk_content(doc_id=result['doc_id'],
  295. chunk_id=result['chunk_id'])
  296. if not content_chunks:
  297. return jsonify({
  298. "status_code": 500,
  299. "detail": "content_chunk not found",
  300. "data": {}
  301. })
  302. content_chunk = content_chunks[0]
  303. datasets = await dataset_mapper.select_dataset_by_id(content_chunk['dataset_id'])
  304. if not datasets:
  305. return jsonify({
  306. "status_code": 500,
  307. "detail": "dataset not found",
  308. "data": {}
  309. })
  310. dataset = datasets[0]
  311. dataset_name = None
  312. if dataset:
  313. dataset_name = dataset['name']
  314. res.append(
  315. {'docId': content_chunk['doc_id'], 'content': content_chunk['text'],
  316. 'contentSummary': content_chunk['summary'], 'score': result['score'], 'datasetName': dataset_name})
  317. data = {'results': res}
  318. return jsonify({'status_code': 200,
  319. 'detail': "success",
  320. 'data': data})
  321. @server_bp.route("/chat", methods=["GET"])
  322. async def chat():
  323. query_text = request.args.get("query")
  324. dataset_ids = request.args.get("datasetIds").split(",")
  325. search_type = request.args.get("search_type", "hybrid")
  326. query_results = await query_search(query_text=query_text, filters={"dataset_id": dataset_ids},
  327. search_type=search_type)
  328. resource = get_resource_manager()
  329. content_chunk_mapper = ContentChunks(resource.mysql_client)
  330. dataset_mapper = Dataset(resource.mysql_client)
  331. res = []
  332. for result in query_results['results']:
  333. content_chunks = await content_chunk_mapper.select_chunk_content(doc_id=result['doc_id'],
  334. chunk_id=result['chunk_id'])
  335. if not content_chunks:
  336. return jsonify({
  337. "status_code": 500,
  338. "detail": "content_chunk not found",
  339. "data": {}
  340. })
  341. content_chunk = content_chunks[0]
  342. datasets = await dataset_mapper.select_dataset_by_id(content_chunk['dataset_id'])
  343. if not datasets:
  344. return jsonify({
  345. "status_code": 500,
  346. "detail": "dataset not found",
  347. "data": {}
  348. })
  349. dataset = datasets[0]
  350. dataset_name = None
  351. if dataset:
  352. dataset_name = dataset['name']
  353. res.append(
  354. {'docId': content_chunk['doc_id'], 'content': content_chunk['text'],
  355. 'contentSummary': content_chunk['summary'], 'score': result['score'], 'datasetName': dataset_name})
  356. chat_classifier = ChatClassifier()
  357. chat_res = await chat_classifier.chat_with_deepseek(query_text, res)
  358. data = {'results': res, 'chat_res': chat_res}
  359. return jsonify({'status_code': 200,
  360. 'detail': "success",
  361. 'data': data})