1234567891011121314151617181920212223242526272829303132333435363738394041 |
- from typing import List, Dict, Optional, Any
- from .base_search import BaseSearch
- from applications.utils.elastic_search import ElasticSearchStrategy
- class HybridSearch(BaseSearch):
- def __init__(self, milvus_pool, es_pool):
- super().__init__(milvus_pool, es_pool)
- self.es_strategy = ElasticSearchStrategy(self.es_pool)
- async def hybrid_search(
- self,
- filters: Dict[str, Any], # 条件过滤
- query_vec: List[float], # query 的向量
- anns_field: str = "vector_text", # query指定的向量空间
- search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
- query_text: str = None, # 是否通过 topic 倒排
- _source=False, # 是否返回元数据
- es_size: int = 10000, # es 第一层过滤数量
- sort_by: str = None, # 排序
- milvus_size: int = 10, # milvus粗排返回数量
- ):
- milvus_ids = await self.es_strategy.base_search(
- filters=filters,
- text_query=query_text,
- _source=_source,
- size=es_size,
- sort_by=sort_by,
- )
- if not milvus_ids:
- return {"results": []}
- milvus_ids_list = ",".join(milvus_ids)
- expr = f"id in [{milvus_ids_list}]"
- return await self.base_vector_search(
- query_vec=query_vec,
- anns_field=anns_field,
- limit=milvus_size,
- expr=expr,
- search_params=search_params,
- )
|