buleprint.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. import asyncio
  2. import json
  3. import traceback
  4. import uuid
  5. from typing import Dict, Any
  6. from quart import Blueprint, jsonify, request
  7. from quart_cors import cors
  8. from applications.api import get_basic_embedding
  9. from applications.api import get_img_embedding
  10. from applications.async_task import AutoRechunkTask, BuildGraph
  11. from applications.async_task import ChunkEmbeddingTask, DeleteTask
  12. from applications.config import (
  13. DEFAULT_MODEL,
  14. LOCAL_MODEL_CONFIG,
  15. BASE_MILVUS_SEARCH_PARAMS,
  16. )
  17. from applications.resource import get_resource_manager
  18. from applications.search import HybridSearch
  19. from applications.utils.chat import RAGChatAgent
  20. from applications.utils.mysql import Dataset, Contents, ContentChunks, ChatResult
  21. from applications.utils.spider.study import study
  22. server_bp = Blueprint("api", __name__, url_prefix="/api")
  23. server_bp = cors(server_bp, allow_origin="*")
  24. @server_bp.route("/embed", methods=["POST"])
  25. async def embed():
  26. body = await request.get_json()
  27. text = body.get("text")
  28. model_name = body.get("model", DEFAULT_MODEL)
  29. if not LOCAL_MODEL_CONFIG.get(model_name):
  30. return jsonify({"error": "error model"})
  31. embedding = await get_basic_embedding(text, model_name)
  32. return jsonify({"embedding": embedding})
  33. @server_bp.route("/img_embed", methods=["POST"])
  34. async def img_embed():
  35. body = await request.get_json()
  36. url_list = body.get("url_list")
  37. if not url_list:
  38. return jsonify({"error": "error url_list"})
  39. embedding = await get_img_embedding(url_list)
  40. return jsonify(embedding)
  41. @server_bp.route("/delete", methods=["POST"])
  42. async def delete():
  43. body = await request.get_json()
  44. level = body.get("level")
  45. params = body.get("params")
  46. if not level or not params:
  47. return jsonify({"error": "error level or params"})
  48. resource = get_resource_manager()
  49. del_task = DeleteTask(resource)
  50. response = await del_task.deal(level, params)
  51. return jsonify(response)
  52. @server_bp.route("/chunk", methods=["POST"])
  53. async def chunk():
  54. body = await request.get_json()
  55. text = body.get("text", "")
  56. ori_doc_id = body.get("doc_id")
  57. text = text.strip()
  58. if not text:
  59. return jsonify({"error": "error text"})
  60. resource = get_resource_manager()
  61. # generate doc id
  62. if ori_doc_id:
  63. body["re_chunk"] = True
  64. doc_id = ori_doc_id
  65. else:
  66. doc_id = f"doc-{uuid.uuid4()}"
  67. chunk_task = ChunkEmbeddingTask(doc_id=doc_id, resource=resource)
  68. doc_id = await chunk_task.deal(body)
  69. return jsonify({"doc_id": doc_id})
  70. @server_bp.route("/search", methods=["POST"])
  71. async def search():
  72. """
  73. filters: Dict[str, Any], # 条件过滤
  74. query_vec: List[float], # query 的向量
  75. anns_field: str = "vector_text", # query指定的向量空间
  76. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  77. query_text: str = None, #是否通过 topic 倒排
  78. _source=False, # 是否返回元数据
  79. es_size: int = 10000, #es 第一层过滤数量
  80. sort_by: str = None, # 排序
  81. milvus_size: int = 10 # milvus粗排返回数量
  82. :return:
  83. """
  84. body = await request.get_json()
  85. # 解析数据
  86. search_type: str = body.get("search_type")
  87. filters: Dict[str, Any] = body.get("filters", {})
  88. anns_field: str = body.get("anns_field", "vector_text")
  89. search_params: Dict[str, Any] = body.get("search_params", BASE_MILVUS_SEARCH_PARAMS)
  90. query_text: str = body.get("query_text")
  91. _source: bool = body.get("_source", False)
  92. es_size: int = body.get("es_size", 10000)
  93. sort_by: str = body.get("sort_by")
  94. milvus_size: int = body.get("milvus", 20)
  95. limit: int = body.get("limit", 10)
  96. if not query_text:
  97. return jsonify({"error": "error query_text"})
  98. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  99. resource = get_resource_manager()
  100. search_engine = HybridSearch(
  101. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  102. )
  103. try:
  104. match search_type:
  105. case "base":
  106. response = await search_engine.base_vector_search(
  107. query_vec=query_vector,
  108. anns_field=anns_field,
  109. search_params=search_params,
  110. limit=limit,
  111. )
  112. return jsonify(response), 200
  113. case "hybrid":
  114. response = await search_engine.hybrid_search(
  115. filters=filters,
  116. query_vec=query_vector,
  117. anns_field=anns_field,
  118. search_params=search_params,
  119. es_size=es_size,
  120. sort_by=sort_by,
  121. milvus_size=milvus_size,
  122. )
  123. return jsonify(response), 200
  124. case "strategy":
  125. return jsonify({"error": "strategy not implemented"}), 405
  126. case _:
  127. return jsonify({"error": "error search_type"}), 200
  128. except Exception as e:
  129. return jsonify({"error": str(e), "traceback": traceback.format_exc()}), 500
  130. @server_bp.route("/dataset/list", methods=["GET"])
  131. async def dataset_list():
  132. resource = get_resource_manager()
  133. datasets = await Dataset(resource.mysql_client).select_dataset()
  134. # 创建所有任务
  135. tasks = [
  136. Contents(resource.mysql_client).select_count(dataset["id"])
  137. for dataset in datasets
  138. ]
  139. counts = await asyncio.gather(*tasks)
  140. # 组装数据
  141. data_list = [
  142. {
  143. "dataset_id": dataset["id"],
  144. "name": dataset["name"],
  145. "count": count,
  146. "created_at": dataset["created_at"].strftime("%Y-%m-%d"),
  147. }
  148. for dataset, count in zip(datasets, counts)
  149. ]
  150. return jsonify({"status_code": 200, "detail": "success", "data": data_list})
  151. @server_bp.route("/dataset/add", methods=["POST"])
  152. async def add_dataset():
  153. resource = get_resource_manager()
  154. dataset_mapper = Dataset(resource.mysql_client)
  155. # 从请求体里取参数
  156. body = await request.get_json()
  157. name = body.get("name")
  158. if not name:
  159. return jsonify({"status_code": 400, "detail": "name is required"})
  160. # 执行新增
  161. dataset = await dataset_mapper.select_dataset_by_name(name)
  162. if dataset:
  163. return jsonify({"status_code": 400, "detail": "name is exist"})
  164. await dataset_mapper.add_dataset(name)
  165. new_dataset = await dataset_mapper.select_dataset_by_name(name)
  166. return jsonify(
  167. {
  168. "status_code": 200,
  169. "detail": "success",
  170. "data": {"datasetId": new_dataset[0]["id"]},
  171. }
  172. )
  173. @server_bp.route("/content/get", methods=["GET"])
  174. async def get_content():
  175. resource = get_resource_manager()
  176. contents = Contents(resource.mysql_client)
  177. # 获取请求参数
  178. doc_id = request.args.get("docId")
  179. if not doc_id:
  180. return jsonify({"status_code": 400, "detail": "doc_id is required", "data": {}})
  181. # 查询内容
  182. rows = await contents.select_content_by_doc_id(doc_id)
  183. if not rows:
  184. return jsonify({"status_code": 404, "detail": "content not found", "data": {}})
  185. row = rows[0]
  186. return jsonify(
  187. {
  188. "status_code": 200,
  189. "detail": "success",
  190. "data": {
  191. "title": row.get("title", ""),
  192. "text": row.get("text", ""),
  193. "doc_id": row.get("doc_id", ""),
  194. },
  195. }
  196. )
  197. @server_bp.route("/content/list", methods=["GET"])
  198. async def content_list():
  199. resource = get_resource_manager()
  200. contents = Contents(resource.mysql_client)
  201. # 从 URL 查询参数获取分页和过滤参数
  202. page_num = int(request.args.get("page", 1))
  203. page_size = int(request.args.get("pageSize", 10))
  204. dataset_id = request.args.get("datasetId")
  205. doc_status = int(request.args.get("doc_status", 1))
  206. # order_by 可以用 JSON 字符串传递
  207. import json
  208. order_by_str = request.args.get("order_by", '{"id":"desc"}')
  209. try:
  210. order_by = json.loads(order_by_str)
  211. except Exception:
  212. order_by = {"id": "desc"}
  213. # 调用 select_contents,获取分页字典
  214. result = await contents.select_contents(
  215. page_num=page_num,
  216. page_size=page_size,
  217. dataset_id=dataset_id,
  218. doc_status=doc_status,
  219. order_by=order_by,
  220. )
  221. # 格式化 entities,只保留必要字段
  222. entities = [
  223. {
  224. "doc_id": row["doc_id"],
  225. "title": row.get("title") or "",
  226. "text": row.get("text") or "",
  227. "statusDesc": "可用" if row.get("status") == 2 else "不可用",
  228. }
  229. for row in result["entities"]
  230. ]
  231. return jsonify(
  232. {
  233. "status_code": 200,
  234. "detail": "success",
  235. "data": {
  236. "entities": entities,
  237. "total_count": result["total_count"],
  238. "page": result["page"],
  239. "page_size": result["page_size"],
  240. "total_pages": result["total_pages"],
  241. },
  242. }
  243. )
  244. async def query_search(
  245. query_text,
  246. filters=None,
  247. search_type="",
  248. anns_field="vector_text",
  249. search_params=BASE_MILVUS_SEARCH_PARAMS,
  250. _source=False,
  251. es_size=10000,
  252. sort_by=None,
  253. milvus_size=20,
  254. limit=10,
  255. ):
  256. if filters is None:
  257. filters = {}
  258. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  259. resource = get_resource_manager()
  260. search_engine = HybridSearch(
  261. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  262. )
  263. try:
  264. match search_type:
  265. case "base":
  266. response = await search_engine.base_vector_search(
  267. query_vec=query_vector,
  268. anns_field=anns_field,
  269. search_params=search_params,
  270. limit=limit,
  271. )
  272. return response
  273. case "hybrid":
  274. response = await search_engine.hybrid_search(
  275. filters=filters,
  276. query_vec=query_vector,
  277. anns_field=anns_field,
  278. search_params=search_params,
  279. es_size=es_size,
  280. sort_by=sort_by,
  281. milvus_size=milvus_size,
  282. )
  283. case "strategy":
  284. return None
  285. case _:
  286. return None
  287. except Exception as e:
  288. return None
  289. if response is None:
  290. return None
  291. resource = get_resource_manager()
  292. content_chunk_mapper = ContentChunks(resource.mysql_client)
  293. res = []
  294. for result in response["results"]:
  295. content_chunks = await content_chunk_mapper.select_chunk_content(
  296. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  297. )
  298. if content_chunks:
  299. content_chunk = content_chunks[0]
  300. res.append(
  301. {
  302. "docId": content_chunk["doc_id"],
  303. "content": content_chunk["text"],
  304. "contentSummary": content_chunk["summary"],
  305. "score": result["score"],
  306. "datasetId": content_chunk["dataset_id"],
  307. }
  308. )
  309. return res[:limit]
  310. @server_bp.route("/query", methods=["GET"])
  311. async def query():
  312. query_text = request.args.get("query")
  313. dataset_ids = request.args.get("datasetIds").split(",")
  314. search_type = request.args.get("search_type", "hybrid")
  315. query_results = await query_search(
  316. query_text=query_text,
  317. filters={"dataset_id": dataset_ids},
  318. search_type=search_type,
  319. )
  320. resource = get_resource_manager()
  321. dataset_mapper = Dataset(resource.mysql_client)
  322. for result in query_results:
  323. datasets = await dataset_mapper.select_dataset_by_id(result["datasetId"])
  324. if datasets:
  325. dataset_name = datasets[0]["name"]
  326. result["datasetName"] = dataset_name
  327. data = {"results": query_results}
  328. return jsonify({"status_code": 200, "detail": "success", "data": data})
  329. @server_bp.route("/chat", methods=["GET"])
  330. async def chat():
  331. query_text = request.args.get("query")
  332. dataset_id_strs = request.args.get("datasetIds")
  333. dataset_ids = dataset_id_strs.split(",")
  334. search_type = request.args.get("search_type", "hybrid")
  335. query_results = await query_search(
  336. query_text=query_text,
  337. filters={"dataset_id": dataset_ids},
  338. search_type=search_type,
  339. )
  340. resource = get_resource_manager()
  341. chat_result_mapper = ChatResult(resource.mysql_client)
  342. dataset_mapper = Dataset(resource.mysql_client)
  343. for result in query_results:
  344. datasets = await dataset_mapper.select_dataset_by_id(result["datasetId"])
  345. if datasets:
  346. dataset_name = datasets[0]["name"]
  347. result["datasetName"] = dataset_name
  348. rag_chat_agent = RAGChatAgent()
  349. chat_result = await rag_chat_agent.chat_with_deepseek(query_text, query_results)
  350. if chat_result["status"] == 0:
  351. study(query_text)
  352. llm_search = await rag_chat_agent.llm_search(query_text)
  353. decision = await rag_chat_agent.make_decision(chat_result, llm_search)
  354. data = {
  355. "results": query_results,
  356. "chat_res": decision["result"],
  357. "rag_summary": chat_result["summary"],
  358. "llm_summary": llm_search["answer"],
  359. }
  360. await chat_result_mapper.insert_chat_result(
  361. query_text,
  362. dataset_id_strs,
  363. json.dumps(query_results, ensure_ascii=False),
  364. chat_result["summary"],
  365. chat_result["relevance_score"],
  366. chat_result["status"],
  367. llm_search["answer"],
  368. llm_search["source"],
  369. llm_search["status"],
  370. decision["result"],
  371. is_web=1,
  372. )
  373. # data = {"results": query_results, "chat_res": 'chat_res', 'rag_summary': 'rag_summary', 'llm_summary': 'llm_summary'}
  374. return jsonify({"status_code": 200, "detail": "success", "data": data})
  375. @server_bp.route("/chunk/list", methods=["GET"])
  376. async def chunk_list():
  377. resource = get_resource_manager()
  378. content_chunk = ContentChunks(resource.mysql_client)
  379. # 从 URL 查询参数获取分页和过滤参数
  380. page_num = int(request.args.get("page", 1))
  381. page_size = int(request.args.get("pageSize", 10))
  382. doc_id = request.args.get("docId")
  383. if not doc_id:
  384. return jsonify({"status_code": 500, "detail": "docId not found", "data": {}})
  385. # 调用 select_contents,获取分页字典
  386. result = await content_chunk.select_chunk_contents(
  387. page_num=page_num, page_size=page_size, doc_id=doc_id
  388. )
  389. if not result:
  390. return jsonify({"status_code": 500, "detail": "chunk is empty", "data": {}})
  391. # 格式化 entities,只保留必要字段
  392. entities = [
  393. {
  394. "id": row["id"],
  395. "chunk_id": row["chunk_id"],
  396. "doc_id": row["doc_id"],
  397. "summary": row.get("summary") or "",
  398. "text": row.get("text") or "",
  399. "statusDesc": "可用" if row.get("chunk_status") == 2 else "不可用",
  400. }
  401. for row in result["entities"]
  402. ]
  403. return jsonify(
  404. {
  405. "status_code": 200,
  406. "detail": "success",
  407. "data": {
  408. "entities": entities,
  409. "total_count": result["total_count"],
  410. "page": result["page"],
  411. "page_size": result["page_size"],
  412. "total_pages": result["total_pages"],
  413. },
  414. }
  415. )
  416. @server_bp.route("/auto_rechunk", methods=["GET"])
  417. async def auto_rechunk():
  418. resource = get_resource_manager()
  419. auto_rechunk_task = AutoRechunkTask(mysql_client=resource.mysql_client)
  420. process_cnt = await auto_rechunk_task.deal()
  421. return jsonify({"status_code": 200, "detail": "success", "cnt": process_cnt})
  422. @server_bp.route("/build_graph", methods=["POST"])
  423. async def delete_task():
  424. body = await request.get_json()
  425. doc_id: str = body.get("doc_id")
  426. if not doc_id:
  427. return jsonify({"status_code": 500, "detail": "docId not found", "data": {}})
  428. resource = get_resource_manager()
  429. build_graph_task = BuildGraph(
  430. neo4j=resource.graph_client,
  431. es_client=resource.es_client,
  432. mysql_client=resource.mysql_client,
  433. )
  434. await build_graph_task.deal(doc_id)
  435. return jsonify({"status_code": 200, "detail": "success", "data": {}})
  436. @server_bp.route("/rag/search", methods=["POST"])
  437. async def rag_search():
  438. body = await request.get_json()
  439. query_text = body.get("queryText")
  440. dataset_id_strs = "11,12"
  441. dataset_ids = dataset_id_strs.split(",")
  442. search_type = "hybrid"
  443. query_results = await query_search(
  444. query_text=query_text,
  445. filters={"dataset_id": dataset_ids},
  446. search_type=search_type,
  447. limit=5,
  448. )
  449. resource = get_resource_manager()
  450. chat_result_mapper = ChatResult(resource.mysql_client)
  451. rag_chat_agent = RAGChatAgent()
  452. chat_result = await rag_chat_agent.chat_with_deepseek(query_text, query_results)
  453. if chat_result["status"] == 0:
  454. study(query_text)
  455. llm_search = await rag_chat_agent.llm_search(query_text)
  456. decision = await rag_chat_agent.make_decision(chat_result, llm_search)
  457. data = {
  458. "result": decision["result"],
  459. "status": decision["status"],
  460. "relevance_score": decision["relevance_score"],
  461. }
  462. await chat_result_mapper.insert_chat_result(
  463. query_text,
  464. dataset_id_strs,
  465. json.dumps(query_results, ensure_ascii=False),
  466. chat_result["summary"],
  467. chat_result["relevance_score"],
  468. chat_result["status"],
  469. llm_search["answer"],
  470. llm_search["source"],
  471. llm_search["status"],
  472. decision["result"],
  473. )
  474. return jsonify({"status_code": 200, "detail": "success", "data": data})
  475. @server_bp.route("/chat/history", methods=["GET"])
  476. async def chat_history():
  477. page_num = int(request.args.get("page", 1))
  478. page_size = int(request.args.get("pageSize", 10))
  479. resource = get_resource_manager()
  480. chat_result_mapper = ChatResult(resource.mysql_client)
  481. result = await chat_result_mapper.select_chat_results(page_num, page_size)
  482. return jsonify(
  483. {
  484. "status_code": 200,
  485. "detail": "success",
  486. "data": {
  487. "entities": result["entities"],
  488. "total_count": result["total_count"],
  489. "page": result["page"],
  490. "page_size": result["page_size"],
  491. "total_pages": result["total_pages"],
  492. },
  493. }
  494. )