12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- from typing import List
- from applications.config import Chunk
- from applications.api import fetch_deepseek_completion
- class LLMClassifier:
- @staticmethod
- def generate_prompt(chunk_text: str) -> str:
- raw_prompt = """
- 你是一个文本分析助手。
- 请严格按照以下要求分析我提供的文本,并输出 **JSON 格式**结果:
- ### 输出字段说明
- 1. **topic**:一句话概括文本主题
- 2. **summary**:50字以内简要说明文本内容
- 3. **domain**:从下列枚举表中选择一个最合适的领域(必须严格选取一个,不能生成新词)
- - ["AI 技术","机器学习","自然语言处理","计算机视觉","知识图谱","数据科学","软件工程","数据库","云计算","网络安全","区块链","量子计算",
- "数学","物理","化学","生物","医学","心理学","教育",
- "金融","会计","经济学","管理学","市场营销","投资/基金",
- "法律","政治","社会学","历史","哲学","语言学","文学","艺术",
- "体育","娱乐","军事","环境科学","地理","其他"]
- 4. **task_type**:文本主要任务类型(如:解释、教学、动作描述、方法提出)
- 5. **keywords**:不超过 3 个,偏向外部检索用标签(概括性强,利于搜索)
- 6. **concepts**:不超过 3 个,偏向内部知识点(技术/学术内涵,和 keywords 明显区分)
- 7. **questions**:文本中显式或隐含的问题(无则返回空数组)
- 8. **entities**:文本中出现的命名实体(如人名、地名、机构名、系统名、模型名等,无则返回空数组)
- ### 输出格式示例
- ```json
- {
- "topic": "RAG 技术与主题感知分块",
- "summary": "介绍RAG在复杂问答中的应用,并提出分块方法。",
- "domain": "自然语言处理",
- "task_type": "方法提出",
- "keywords": ["RAG", "文本分块", "问答系统"],
- "concepts": ["检索增强生成", "语义边界检测", "主题感知分块"],
- "questions": ["如何优化RAG在问答场景中的效果?"],
- "entities": ["RAG"]
- }
- 下面是文本:
- """
- return raw_prompt.strip() + chunk_text
- async def classify_chunk(self, chunk: Chunk) -> Chunk:
- text = chunk.text.strip()
- prompt = self.generate_prompt(text)
- response = await fetch_deepseek_completion(
- model="DeepSeek-V3", prompt=prompt, output_type="json"
- )
- return Chunk(
- chunk_id=chunk.chunk_id,
- doc_id=chunk.doc_id,
- text=text,
- tokens=chunk.tokens,
- topic_purity=chunk.topic_purity,
- dataset_id=chunk.dataset_id,
- summary=response.get("summary"),
- topic=response.get("topic"),
- domain=response.get("domain"),
- task_type=response.get("task_type"),
- concepts=response.get("concepts", []),
- keywords=response.get("keywords", []),
- questions=response.get("questions", []),
- entities=response.get("entities", []),
- )
|