server.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. import asyncio
  2. import json
  3. from typing import Any, Dict, List
  4. import mcp.types as types
  5. from mcp.server.lowlevel import Server
  6. from applications.resource import get_resource_manager
  7. from applications.utils.chat import RAGChatAgent
  8. from applications.utils.mysql import ChatResult
  9. from applications.utils.search.qwen import QwenClient
  10. from applications.utils.spider.study import study
  11. from routes.blueprint import query_search
  12. def create_mcp_server() -> Server:
  13. """创建并配置MCP服务器"""
  14. app = Server("mcp-rag-server")
  15. @app.call_tool()
  16. async def call_tool(
  17. name: str, arguments: Dict[str, Any]
  18. ) -> List[types.TextContent]:
  19. """处理工具调用"""
  20. # ctx = app.request_context
  21. if name == "rag-search":
  22. data = await rag_search(arguments["query_text"])
  23. result = json.dumps(data, ensure_ascii=False, indent=2)
  24. else:
  25. raise ValueError(f"Unknown tool: {name}")
  26. return [types.TextContent(type="text", text=result)]
  27. @app.list_tools()
  28. async def list_tools() -> List[types.Tool]:
  29. return [
  30. types.Tool(
  31. name="rag-search",
  32. title="RAG搜索",
  33. description="搜索内容并生成总结",
  34. inputSchema={
  35. "type": "object",
  36. "properties": {
  37. "query_text": {
  38. "type": "string",
  39. "description": "用户输入的查询文本",
  40. }
  41. },
  42. "required": ["query_text"], # 只强制 query_text 必填
  43. "additionalProperties": False,
  44. },
  45. ),
  46. ]
  47. return app
  48. async def process_question(question, query_text, rag_chat_agent):
  49. try:
  50. dataset_id_strs = "11,12"
  51. dataset_ids = dataset_id_strs.split(",")
  52. search_type = "hybrid"
  53. # 执行查询任务
  54. query_results = await query_search(
  55. query_text=question,
  56. filters={"dataset_id": dataset_ids},
  57. search_type=search_type,
  58. )
  59. resource = get_resource_manager()
  60. chat_result_mapper = ChatResult(resource.mysql_client)
  61. # 异步执行 chat 与 deepseek 的对话
  62. chat_result = await rag_chat_agent.chat_with_deepseek(question, query_results)
  63. # # 判断是否需要执行 study
  64. study_task_id = None
  65. if chat_result["status"] == 0:
  66. study_task_id = study(question)["task_id"]
  67. qwen_client = QwenClient()
  68. llm_search = qwen_client.search_and_chat(user_prompt=question, search_strategy="agent")
  69. # 执行决策逻辑
  70. decision = await rag_chat_agent.make_decision(question, chat_result, llm_search)
  71. # 构建返回的数据
  72. data = {
  73. "query": question,
  74. "result": decision["result"],
  75. "status": decision["status"],
  76. "relevance_score": decision["relevance_score"],
  77. }
  78. # 插入数据库
  79. await chat_result_mapper.insert_chat_result(
  80. question,
  81. dataset_id_strs,
  82. json.dumps(query_results, ensure_ascii=False),
  83. chat_result["summary"],
  84. chat_result["relevance_score"],
  85. chat_result["status"],
  86. llm_search["content"],
  87. json.dumps(llm_search["search_results"], ensure_ascii=False),
  88. 1,
  89. decision["result"],
  90. study_task_id,
  91. )
  92. return data
  93. except Exception as e:
  94. print(f"Error processing question: {question}. Error: {str(e)}")
  95. return {"query": question, "error": str(e)}
  96. async def rag_search(query_text: str):
  97. rag_chat_agent = RAGChatAgent()
  98. spilt_query = await rag_chat_agent.split_query(query_text)
  99. split_questions = spilt_query["split_questions"]
  100. split_questions.append(query_text)
  101. # 使用asyncio.gather并行处理每个问题
  102. tasks = [
  103. process_question(question, query_text, rag_chat_agent)
  104. for question in split_questions
  105. ]
  106. # 等待所有任务完成并收集结果
  107. data_list = await asyncio.gather(*tasks)
  108. return data_list