async_task.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import json
  2. import os
  3. import uuid
  4. from applications.api import get_basic_embedding
  5. from applications.api.qwen import QwenClient
  6. from applications.async_task import ChunkBooksTask
  7. from applications.config import BASE_MILVUS_SEARCH_PARAMS, DEFAULT_MODEL
  8. from applications.resource import get_resource_manager
  9. from applications.search import HybridSearch
  10. from applications.utils.mysql import Books, ChatResult, ContentChunks
  11. from applications.utils.oss.oss_client import OSSClient
  12. from applications.utils.pdf.book_extract import book_extract
  13. from applications.utils.spider.study import study
  14. async def handle_books():
  15. try:
  16. # 获取资源管理器和客户端
  17. resource = get_resource_manager()
  18. books_mapper = Books(resource.mysql_client)
  19. oss_client = OSSClient()
  20. # 获取待处理的书籍列表
  21. books = await books_mapper.select_init_books()
  22. for book in books:
  23. book_id = book.get("book_id")
  24. # 获取提取状态
  25. extract_status = (await books_mapper.select_book_extract_status(book_id))[0].get("extract_status")
  26. if extract_status == 0:
  27. # 更新提取状态为处理中
  28. await books_mapper.update_book_extract_status(book_id, 1)
  29. book_path = os.path.join("/tmp", book_id)
  30. if not os.path.exists(book_path):
  31. oss_path = f"rag/pdfs/{book_id}"
  32. try:
  33. # 下载书籍文件
  34. await oss_client.download_file(oss_path, book_path)
  35. except Exception as e:
  36. continue # 如果下载失败,跳过该书籍
  37. try:
  38. # 提取书籍内容
  39. res = await book_extract(book_path, book_id)
  40. if res:
  41. content_list = res.get("results", {}).get(book_id, {}).get("content_list", [])
  42. if content_list:
  43. # 更新提取结果
  44. await books_mapper.update_book_extract_result(book_id, content_list)
  45. # 创建文档 ID
  46. doc_id = f"doc-{uuid.uuid4()}"
  47. chunk_task = ChunkBooksTask(doc_id=doc_id, resource=resource)
  48. # 处理分片任务
  49. body = {"book_id": book_id}
  50. await chunk_task.deal(body) # 异步执行分片任务
  51. except Exception as e:
  52. continue # 如果提取过程失败,跳过该书籍
  53. except Exception as e:
  54. # 捕获整体异常
  55. print(f"处理请求失败,错误: {e}")
  56. async def process_question(question, query_text, rag_chat_agent):
  57. try:
  58. dataset_id_strs = "11,12"
  59. dataset_ids = dataset_id_strs.split(",")
  60. search_type = "hybrid"
  61. # 执行查询任务
  62. query_results = await query_search(
  63. query_text=question,
  64. filters={"dataset_id": dataset_ids},
  65. search_type=search_type,
  66. )
  67. resource = get_resource_manager()
  68. chat_result_mapper = ChatResult(resource.mysql_client)
  69. # 异步执行 chat 与 deepseek 的对话
  70. chat_result = await rag_chat_agent.chat_with_deepseek(question, query_results)
  71. # # 判断是否需要执行 study
  72. study_task_id = None
  73. if chat_result["status"] == 0:
  74. study_task_id = study(question)["task_id"]
  75. qwen_client = QwenClient()
  76. llm_search = qwen_client.search_and_chat(
  77. user_prompt=question
  78. )
  79. decision = await rag_chat_agent.make_decision(
  80. question, chat_result, llm_search
  81. )
  82. # 构建返回的数据
  83. data = {
  84. "query": question,
  85. "result": decision["result"],
  86. "status": decision["status"],
  87. "relevance_score": decision["relevance_score"],
  88. # "used_tools": decision["used_tools"],
  89. }
  90. # 插入数据库
  91. await chat_result_mapper.insert_chat_result(
  92. question,
  93. dataset_id_strs,
  94. json.dumps(query_results, ensure_ascii=False),
  95. chat_result["summary"],
  96. chat_result["relevance_score"],
  97. chat_result["status"],
  98. llm_search["content"],
  99. json.dumps(llm_search["search_results"], ensure_ascii=False),
  100. 1,
  101. decision["result"],
  102. study_task_id,
  103. )
  104. return data
  105. except Exception as e:
  106. print(f"Error processing question: {question}. Error: {str(e)}")
  107. return {"query": question, "error": str(e)}
  108. async def query_search(
  109. query_text,
  110. filters=None,
  111. search_type="",
  112. anns_field="vector_text",
  113. search_params=BASE_MILVUS_SEARCH_PARAMS,
  114. _source=False,
  115. es_size=10000,
  116. sort_by=None,
  117. milvus_size=20,
  118. limit=10,
  119. ):
  120. if filters is None:
  121. filters = {}
  122. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  123. resource = get_resource_manager()
  124. search_engine = HybridSearch(
  125. milvus_pool=resource.milvus_client,
  126. es_pool=resource.es_client,
  127. graph_pool=resource.graph_client,
  128. )
  129. try:
  130. match search_type:
  131. case "base":
  132. response = await search_engine.base_vector_search(
  133. query_vec=query_vector,
  134. anns_field=anns_field,
  135. search_params=search_params,
  136. limit=limit,
  137. )
  138. return response
  139. case "hybrid":
  140. response = await search_engine.hybrid_search(
  141. filters=filters,
  142. query_vec=query_vector,
  143. anns_field=anns_field,
  144. search_params=search_params,
  145. es_size=es_size,
  146. sort_by=sort_by,
  147. milvus_size=milvus_size,
  148. )
  149. case "strategy":
  150. return None
  151. case _:
  152. return None
  153. except Exception as e:
  154. return None
  155. if response is None:
  156. return None
  157. resource = get_resource_manager()
  158. content_chunk_mapper = ContentChunks(resource.mysql_client)
  159. res = []
  160. for result in response["results"]:
  161. content_chunks = await content_chunk_mapper.select_chunk_content(
  162. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  163. )
  164. if content_chunks:
  165. content_chunk = content_chunks[0]
  166. res.append(
  167. {
  168. "docId": content_chunk["doc_id"],
  169. "content": content_chunk["text"],
  170. "contentSummary": content_chunk["summary"],
  171. "score": result["score"],
  172. "datasetId": content_chunk["dataset_id"],
  173. }
  174. )
  175. return res[:limit]