buleprint.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. import asyncio
  2. import json
  3. import traceback
  4. import uuid
  5. from typing import Dict, Any
  6. from quart import Blueprint, jsonify, request
  7. from quart_cors import cors
  8. from applications.config import (
  9. DEFAULT_MODEL,
  10. LOCAL_MODEL_CONFIG,
  11. ChunkerConfig,
  12. BASE_MILVUS_SEARCH_PARAMS,
  13. )
  14. from applications.resource import get_resource_manager
  15. from applications.api import get_basic_embedding
  16. from applications.api import get_img_embedding
  17. from applications.async_task import ChunkEmbeddingTask, DeleteTask
  18. from applications.search import HybridSearch
  19. from applications.utils.chat import ChatClassifier
  20. from applications.utils.mysql import Dataset, Contents, ContentChunks
  21. from applications.utils.mysql.mapper import ChatRes
  22. server_bp = Blueprint("api", __name__, url_prefix="/api")
  23. server_bp = cors(server_bp, allow_origin="*")
  24. @server_bp.route("/embed", methods=["POST"])
  25. async def embed():
  26. body = await request.get_json()
  27. text = body.get("text")
  28. model_name = body.get("model", DEFAULT_MODEL)
  29. if not LOCAL_MODEL_CONFIG.get(model_name):
  30. return jsonify({"error": "error model"})
  31. embedding = await get_basic_embedding(text, model_name)
  32. return jsonify({"embedding": embedding})
  33. @server_bp.route("/img_embed", methods=["POST"])
  34. async def img_embed():
  35. body = await request.get_json()
  36. url_list = body.get("url_list")
  37. if not url_list:
  38. return jsonify({"error": "error url_list"})
  39. embedding = await get_img_embedding(url_list)
  40. return jsonify(embedding)
  41. @server_bp.route("/delete", methods=["POST"])
  42. async def delete():
  43. body = await request.get_json()
  44. level = body.get("level")
  45. params = body.get("params")
  46. if not level or not params:
  47. return jsonify({"error": "error level or params"})
  48. resource = get_resource_manager()
  49. delete_task = DeleteTask(resource)
  50. response = await delete_task.deal(level, params)
  51. return jsonify(response)
  52. @server_bp.route("/chunk", methods=["POST"])
  53. async def chunk():
  54. body = await request.get_json()
  55. text = body.get("text", "")
  56. text = text.strip()
  57. if not text:
  58. return jsonify({"error": "error text"})
  59. resource = get_resource_manager()
  60. doc_id = f"doc-{uuid.uuid4()}"
  61. chunk_task = ChunkEmbeddingTask(doc_id=doc_id, resource=resource)
  62. doc_id = await chunk_task.deal(body)
  63. return jsonify({"doc_id": doc_id})
  64. @server_bp.route("/search", methods=["POST"])
  65. async def search():
  66. """
  67. filters: Dict[str, Any], # 条件过滤
  68. query_vec: List[float], # query 的向量
  69. anns_field: str = "vector_text", # query指定的向量空间
  70. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  71. query_text: str = None, #是否通过 topic 倒排
  72. _source=False, # 是否返回元数据
  73. es_size: int = 10000, #es 第一层过滤数量
  74. sort_by: str = None, # 排序
  75. milvus_size: int = 10 # milvus粗排返回数量
  76. :return:
  77. """
  78. body = await request.get_json()
  79. # 解析数据
  80. search_type: str = body.get("search_type")
  81. filters: Dict[str, Any] = body.get("filters", {})
  82. anns_field: str = body.get("anns_field", "vector_text")
  83. search_params: Dict[str, Any] = body.get("search_params", BASE_MILVUS_SEARCH_PARAMS)
  84. query_text: str = body.get("query_text")
  85. _source: bool = body.get("_source", False)
  86. es_size: int = body.get("es_size", 10000)
  87. sort_by: str = body.get("sort_by")
  88. milvus_size: int = body.get("milvus", 20)
  89. limit: int = body.get("limit", 10)
  90. if not query_text:
  91. return jsonify({"error": "error query_text"})
  92. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  93. resource = get_resource_manager()
  94. search_engine = HybridSearch(
  95. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  96. )
  97. try:
  98. match search_type:
  99. case "base":
  100. response = await search_engine.base_vector_search(
  101. query_vec=query_vector,
  102. anns_field=anns_field,
  103. search_params=search_params,
  104. limit=limit,
  105. )
  106. return jsonify(response), 200
  107. case "hybrid":
  108. response = await search_engine.hybrid_search(
  109. filters=filters,
  110. query_vec=query_vector,
  111. anns_field=anns_field,
  112. search_params=search_params,
  113. es_size=es_size,
  114. sort_by=sort_by,
  115. milvus_size=milvus_size,
  116. )
  117. return jsonify(response), 200
  118. case "strategy":
  119. return jsonify({"error": "strategy not implemented"}), 405
  120. case _:
  121. return jsonify({"error": "error search_type"}), 200
  122. except Exception as e:
  123. return jsonify({"error": str(e), "traceback": traceback.format_exc()}), 500
  124. @server_bp.route("/dataset/list", methods=["GET"])
  125. async def dataset_list():
  126. resource = get_resource_manager()
  127. datasets = await Dataset(resource.mysql_client).select_dataset()
  128. # 创建所有任务
  129. tasks = [
  130. Contents(resource.mysql_client).select_count(dataset["id"])
  131. for dataset in datasets
  132. ]
  133. counts = await asyncio.gather(*tasks)
  134. # 组装数据
  135. data_list = [
  136. {
  137. "dataset_id": dataset["id"],
  138. "name": dataset["name"],
  139. "count": count,
  140. "created_at": dataset["created_at"].strftime("%Y-%m-%d"),
  141. }
  142. for dataset, count in zip(datasets, counts)
  143. ]
  144. return jsonify({
  145. "status_code": 200,
  146. "detail": "success",
  147. "data": data_list
  148. })
  149. @server_bp.route("/dataset/add", methods=["POST"])
  150. async def add_dataset():
  151. resource = get_resource_manager()
  152. dataset = Dataset(resource.mysql_client)
  153. # 从请求体里取参数
  154. body = await request.get_json()
  155. name = body.get("name")
  156. if not name:
  157. return jsonify({
  158. "status_code": 400,
  159. "detail": "name is required"
  160. })
  161. # 执行新增
  162. await dataset.add_dataset(name)
  163. return jsonify({
  164. "status_code": 200,
  165. "detail": "success"
  166. })
  167. @server_bp.route("/content/get", methods=["GET"])
  168. async def get_content():
  169. resource = get_resource_manager()
  170. contents = Contents(resource.mysql_client)
  171. # 获取请求参数
  172. doc_id = request.args.get("docId")
  173. if not doc_id:
  174. return jsonify({
  175. "status_code": 400,
  176. "detail": "doc_id is required",
  177. "data": {}
  178. })
  179. # 查询内容
  180. rows = await contents.select_content_by_doc_id(doc_id)
  181. if not rows:
  182. return jsonify({
  183. "status_code": 404,
  184. "detail": "content not found",
  185. "data": {}
  186. })
  187. row = rows[0]
  188. return jsonify({
  189. "status_code": 200,
  190. "detail": "success",
  191. "data": {
  192. "title": row.get("title", ""),
  193. "text": row.get("text", ""),
  194. "doc_id": row.get("doc_id", "")
  195. }
  196. })
  197. @server_bp.route("/content/list", methods=["GET"])
  198. async def content_list():
  199. resource = get_resource_manager()
  200. contents = Contents(resource.mysql_client)
  201. # 从 URL 查询参数获取分页和过滤参数
  202. page_num = int(request.args.get("page", 1))
  203. page_size = int(request.args.get("pageSize", 10))
  204. dataset_id = request.args.get("datasetId")
  205. doc_status = int(request.args.get("doc_status", 1))
  206. # order_by 可以用 JSON 字符串传递
  207. import json
  208. order_by_str = request.args.get("order_by", '{"id":"desc"}')
  209. try:
  210. order_by = json.loads(order_by_str)
  211. except Exception:
  212. order_by = {"id": "desc"}
  213. # 调用 select_contents,获取分页字典
  214. result = await contents.select_contents(
  215. page_num=page_num,
  216. page_size=page_size,
  217. dataset_id=dataset_id,
  218. doc_status=doc_status,
  219. order_by=order_by,
  220. )
  221. # 格式化 entities,只保留必要字段
  222. entities = [
  223. {
  224. "doc_id": row["doc_id"],
  225. "title": row.get("title") or "",
  226. "text": row.get("text") or "",
  227. }
  228. for row in result["entities"]
  229. ]
  230. return jsonify({
  231. "status_code": 200,
  232. "detail": "success",
  233. "data": {
  234. "entities": entities,
  235. "total_count": result["total_count"],
  236. "page": result["page"],
  237. "page_size": result["page_size"],
  238. "total_pages": result["total_pages"]
  239. }
  240. })
  241. async def query_search(query_text, filters=None, search_type='', anns_field='vector_text',
  242. search_params=BASE_MILVUS_SEARCH_PARAMS, _source=False, es_size=10000, sort_by=None,
  243. milvus_size=20, limit=10):
  244. if filters is None:
  245. filters = {}
  246. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  247. resource = get_resource_manager()
  248. search_engine = HybridSearch(
  249. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  250. )
  251. try:
  252. match search_type:
  253. case "base":
  254. response = await search_engine.base_vector_search(
  255. query_vec=query_vector,
  256. anns_field=anns_field,
  257. search_params=search_params,
  258. limit=limit,
  259. )
  260. return response
  261. case "hybrid":
  262. response = await search_engine.hybrid_search(
  263. filters=filters,
  264. query_vec=query_vector,
  265. anns_field=anns_field,
  266. search_params=search_params,
  267. es_size=es_size,
  268. sort_by=sort_by,
  269. milvus_size=milvus_size,
  270. )
  271. return response
  272. case "strategy":
  273. return None
  274. case _:
  275. return None
  276. except Exception as e:
  277. return None
  278. @server_bp.route("/query", methods=["GET"])
  279. async def query():
  280. query_text = request.args.get("query")
  281. dataset_ids = request.args.get("datasetIds").split(",")
  282. search_type = request.args.get("search_type", "hybrid")
  283. query_results = await query_search(query_text=query_text, filters={"dataset_id": dataset_ids},
  284. search_type=search_type)
  285. resource = get_resource_manager()
  286. content_chunk_mapper = ContentChunks(resource.mysql_client)
  287. dataset_mapper = Dataset(resource.mysql_client)
  288. res = []
  289. for result in query_results['results']:
  290. content_chunks = await content_chunk_mapper.select_chunk_content(doc_id=result['doc_id'],
  291. chunk_id=result['chunk_id'])
  292. if not content_chunks:
  293. return jsonify({
  294. "status_code": 500,
  295. "detail": "content_chunk not found",
  296. "data": {}
  297. })
  298. content_chunk = content_chunks[0]
  299. datasets = await dataset_mapper.select_dataset_by_id(content_chunk['dataset_id'])
  300. if not datasets:
  301. return jsonify({
  302. "status_code": 500,
  303. "detail": "dataset not found",
  304. "data": {}
  305. })
  306. dataset = datasets[0]
  307. dataset_name = None
  308. if dataset:
  309. dataset_name = dataset['name']
  310. res.append(
  311. {'docId': content_chunk['doc_id'], 'content': content_chunk['text'],
  312. 'contentSummary': content_chunk['summary'], 'score': result['score'], 'datasetName': dataset_name})
  313. data = {'results': res}
  314. return jsonify({'status_code': 200,
  315. 'detail': "success",
  316. 'data': data})
  317. @server_bp.route("/chat", methods=["GET"])
  318. async def chat():
  319. query_text = request.args.get("query")
  320. dataset_id_strs = request.args.get("datasetIds")
  321. dataset_ids = dataset_id_strs.split(",")
  322. search_type = request.args.get("search_type", "hybrid")
  323. query_results = await query_search(query_text=query_text, filters={"dataset_id": dataset_ids},
  324. search_type=search_type)
  325. resource = get_resource_manager()
  326. content_chunk_mapper = ContentChunks(resource.mysql_client)
  327. dataset_mapper = Dataset(resource.mysql_client)
  328. chat_res_mapper = ChatRes(resource.mysql_client)
  329. res = []
  330. for result in query_results['results']:
  331. content_chunks = await content_chunk_mapper.select_chunk_content(doc_id=result['doc_id'],
  332. chunk_id=result['chunk_id'])
  333. if not content_chunks:
  334. return jsonify({
  335. "status_code": 500,
  336. "detail": "content_chunk not found",
  337. "data": {}
  338. })
  339. content_chunk = content_chunks[0]
  340. datasets = await dataset_mapper.select_dataset_by_id(content_chunk['dataset_id'])
  341. if not datasets:
  342. return jsonify({
  343. "status_code": 500,
  344. "detail": "dataset not found",
  345. "data": {}
  346. })
  347. dataset = datasets[0]
  348. dataset_name = None
  349. if dataset:
  350. dataset_name = dataset['name']
  351. res.append(
  352. {'docId': content_chunk['doc_id'], 'content': content_chunk['text'],
  353. 'contentSummary': content_chunk['summary'], 'score': result['score'], 'datasetName': dataset_name})
  354. chat_classifier = ChatClassifier()
  355. chat_res = await chat_classifier.chat_with_deepseek(query_text, res)
  356. data = {'results': res, 'chat_res': chat_res['summary']}
  357. await chat_res_mapper.insert_chat_res(query_text, dataset_id_strs, json.dumps(data, ensure_ascii=False),
  358. chat_res['summary'], chat_res['relevance_score'])
  359. return jsonify({'status_code': 200,
  360. 'detail': "success",
  361. 'data': data})
  362. @server_bp.route("/chunk/list", methods=["GET"])
  363. async def chunk_list():
  364. resource = get_resource_manager()
  365. content_chunk = ContentChunks(resource.mysql_client)
  366. # 从 URL 查询参数获取分页和过滤参数
  367. page_num = int(request.args.get("page", 1))
  368. page_size = int(request.args.get("pageSize", 10))
  369. doc_id = request.args.get("docId")
  370. if not doc_id:
  371. return jsonify({
  372. "status_code": 500,
  373. "detail": "docId not found",
  374. "data": {}
  375. })
  376. # 调用 select_contents,获取分页字典
  377. result = await content_chunk.select_chunk_contents(page_num=page_num, page_size=page_size, doc_id=doc_id)
  378. if not result:
  379. return jsonify({
  380. "status_code": 500,
  381. "detail": "chunk is empty",
  382. "data": {}
  383. })
  384. # 格式化 entities,只保留必要字段
  385. entities = [
  386. {
  387. "id": row['id'],
  388. "chunk_id": row['chunk_id'],
  389. "doc_id": row["doc_id"],
  390. "summary": row.get("summary") or "",
  391. "text": row.get("text") or "",
  392. }
  393. for row in result["entities"]
  394. ]
  395. return jsonify({
  396. "status_code": 200,
  397. "detail": "success",
  398. "data": {
  399. "entities": entities,
  400. "total_count": result["total_count"],
  401. "page": result["page"],
  402. "page_size": result["page_size"],
  403. "total_pages": result["total_pages"]
  404. }
  405. })