async_task.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. import json
  2. import os
  3. import uuid
  4. from applications.api import get_basic_embedding
  5. from applications.api.qwen import QwenClient
  6. from applications.async_task import ChunkBooksTask
  7. from applications.config import BASE_MILVUS_SEARCH_PARAMS, DEFAULT_MODEL
  8. from applications.resource import get_resource_manager
  9. from applications.search import HybridSearch
  10. from applications.utils.mysql import Books, ChatResult, ContentChunks
  11. from applications.utils.oss.oss_client import OSSClient
  12. from applications.utils.pdf.book_extract import book_extract
  13. from applications.utils.spider.study import study
  14. async def handle_books():
  15. try:
  16. # 获取资源管理器和客户端
  17. resource = get_resource_manager()
  18. books_mapper = Books(resource.mysql_client)
  19. oss_client = OSSClient()
  20. # 获取待处理的书籍列表
  21. books = await books_mapper.select_init_books()
  22. for book in books:
  23. book_id = book.get("book_id")
  24. # 获取提取状态
  25. extract_status = (await books_mapper.select_book_extract_status(book_id))[
  26. 0
  27. ].get("extract_status")
  28. if extract_status == 0:
  29. # 更新提取状态为处理中
  30. await books_mapper.update_book_extract_status(book_id, 1)
  31. book_path = os.path.join("/tmp", book_id)
  32. if not os.path.exists(book_path):
  33. oss_path = f"rag/pdfs/{book_id}"
  34. try:
  35. # 下载书籍文件
  36. await oss_client.download_file(oss_path, book_path)
  37. except Exception as e:
  38. continue # 如果下载失败,跳过该书籍
  39. try:
  40. # 提取书籍内容
  41. res = await book_extract(book_path, book_id)
  42. if res:
  43. content_list = (
  44. res.get("results", {})
  45. .get(book_id, {})
  46. .get("content_list", [])
  47. )
  48. if content_list:
  49. # 更新提取结果
  50. await books_mapper.update_book_extract_result(
  51. book_id, content_list
  52. )
  53. except Exception as e:
  54. await books_mapper.update_book_extract_status(book_id, 99)
  55. continue # 如果提取过程失败,跳过该书籍
  56. # 创建文档 ID
  57. doc_id = f"doc-{uuid.uuid4()}"
  58. chunk_task = ChunkBooksTask(doc_id=doc_id, resource=resource)
  59. # 处理分片任务
  60. body = {"book_id": book_id}
  61. await chunk_task.deal(body) # 异步执行分片任务
  62. except Exception as e:
  63. # 捕获整体异常
  64. print(f"处理请求失败,错误: {e}")
  65. async def process_question(question, query_text, rag_chat_agent):
  66. try:
  67. dataset_id_strs = "11,12"
  68. dataset_ids = dataset_id_strs.split(",")
  69. search_type = "hybrid"
  70. # 执行查询任务
  71. query_results = await query_search(
  72. query_text=question,
  73. filters={"dataset_id": dataset_ids},
  74. search_type=search_type,
  75. )
  76. resource = get_resource_manager()
  77. chat_result_mapper = ChatResult(resource.mysql_client)
  78. # 异步执行 chat 与 deepseek 的对话
  79. chat_result = await rag_chat_agent.chat_with_deepseek(question, query_results)
  80. # # 判断是否需要执行 study
  81. study_task_id = None
  82. if chat_result["status"] == 0:
  83. study_task_id = study(question)["task_id"]
  84. qwen_client = QwenClient()
  85. llm_search = qwen_client.search_and_chat(user_prompt=question)
  86. decision = await rag_chat_agent.make_decision(question, chat_result, llm_search)
  87. # 构建返回的数据
  88. data = {
  89. "query": question,
  90. "result": decision["result"],
  91. "status": decision["status"],
  92. "relevance_score": decision["relevance_score"],
  93. # "used_tools": decision["used_tools"],
  94. }
  95. # 插入数据库
  96. await chat_result_mapper.insert_chat_result(
  97. question,
  98. dataset_id_strs,
  99. json.dumps(query_results, ensure_ascii=False),
  100. chat_result["summary"],
  101. chat_result["relevance_score"],
  102. chat_result["status"],
  103. llm_search["content"],
  104. json.dumps(llm_search["search_results"], ensure_ascii=False),
  105. 1,
  106. decision["result"],
  107. study_task_id,
  108. )
  109. return data
  110. except Exception as e:
  111. print(f"Error processing question: {question}. Error: {str(e)}")
  112. return {"query": question, "error": str(e)}
  113. async def query_search(
  114. query_text,
  115. filters=None,
  116. search_type="",
  117. anns_field="vector_text",
  118. search_params=BASE_MILVUS_SEARCH_PARAMS,
  119. _source=False,
  120. es_size=10000,
  121. sort_by=None,
  122. milvus_size=20,
  123. limit=10,
  124. ):
  125. if filters is None:
  126. filters = {}
  127. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  128. resource = get_resource_manager()
  129. search_engine = HybridSearch(
  130. milvus_pool=resource.milvus_client,
  131. es_pool=resource.es_client,
  132. graph_pool=resource.graph_client,
  133. )
  134. try:
  135. match search_type:
  136. case "base":
  137. response = await search_engine.base_vector_search(
  138. query_vec=query_vector,
  139. anns_field=anns_field,
  140. search_params=search_params,
  141. limit=limit,
  142. )
  143. return response
  144. case "hybrid":
  145. response = await search_engine.hybrid_search(
  146. filters=filters,
  147. query_vec=query_vector,
  148. anns_field=anns_field,
  149. search_params=search_params,
  150. es_size=es_size,
  151. sort_by=sort_by,
  152. milvus_size=milvus_size,
  153. )
  154. case "strategy":
  155. return None
  156. case _:
  157. return None
  158. except Exception as e:
  159. return None
  160. if response is None:
  161. return None
  162. resource = get_resource_manager()
  163. content_chunk_mapper = ContentChunks(resource.mysql_client)
  164. res = []
  165. for result in response["results"]:
  166. content_chunks = await content_chunk_mapper.select_chunk_content(
  167. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  168. )
  169. if content_chunks:
  170. content_chunk = content_chunks[0]
  171. res.append(
  172. {
  173. "docId": content_chunk["doc_id"],
  174. "content": content_chunk["text"],
  175. "contentSummary": content_chunk["summary"],
  176. "score": result["score"],
  177. "datasetId": content_chunk["dataset_id"],
  178. }
  179. )
  180. return res[:limit]