blueprint.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. import asyncio
  2. import json
  3. import os
  4. import traceback
  5. import uuid
  6. from typing import Dict, Any
  7. from quart import Blueprint, jsonify, request
  8. from quart_cors import cors
  9. from applications.api import get_basic_embedding
  10. from applications.api import get_img_embedding
  11. from applications.async_task import AutoRechunkTask, BuildGraph
  12. from applications.async_task import ChunkEmbeddingTask, DeleteTask, ChunkBooksTask
  13. from applications.async_task import RecordPattern
  14. from applications.config import (
  15. DEFAULT_MODEL,
  16. LOCAL_MODEL_CONFIG,
  17. BASE_MILVUS_SEARCH_PARAMS,
  18. )
  19. from applications.resource import get_resource_manager
  20. from applications.search import HybridSearch
  21. from applications.utils.chat import RAGChatAgent
  22. from applications.utils.mysql import Dataset, Contents, ContentChunks, ChatResult, Books
  23. from applications.api.qwen import QwenClient
  24. from applications.utils.oss.oss_client import OSSClient
  25. from applications.utils.task.async_task import (
  26. handle_books,
  27. process_question,
  28. query_search,
  29. )
  30. server_bp = Blueprint("api", __name__, url_prefix="/api")
  31. server_bp = cors(server_bp, allow_origin="*")
  32. @server_bp.route("/embed", methods=["POST"])
  33. async def embed():
  34. body = await request.get_json()
  35. text = body.get("text")
  36. model_name = body.get("model", DEFAULT_MODEL)
  37. if not LOCAL_MODEL_CONFIG.get(model_name):
  38. return jsonify({"error": "error model"})
  39. embedding = await get_basic_embedding(text, model_name)
  40. return jsonify({"embedding": embedding})
  41. @server_bp.route("/img_embed", methods=["POST"])
  42. async def img_embed():
  43. body = await request.get_json()
  44. url_list = body.get("url_list")
  45. if not url_list:
  46. return jsonify({"error": "error url_list"})
  47. embedding = await get_img_embedding(url_list)
  48. return jsonify(embedding)
  49. @server_bp.route("/delete", methods=["POST"])
  50. async def delete():
  51. body = await request.get_json()
  52. level = body.get("level")
  53. params = body.get("params")
  54. if not level or not params:
  55. return jsonify({"error": "error level or params"})
  56. resource = get_resource_manager()
  57. del_task = DeleteTask(resource)
  58. response = await del_task.deal(level, params)
  59. return jsonify(response)
  60. @server_bp.route("/chunk", methods=["POST"])
  61. async def chunk():
  62. body = await request.get_json()
  63. text = body.get("text", "")
  64. ori_doc_id = body.get("doc_id")
  65. is_web = body.get("is_web")
  66. if is_web:
  67. dataset_id = body.get("dataset_id", 0)
  68. if dataset_id == 12 or dataset_id == 11:
  69. return jsonify({"error": "系统知识库不支持手动添加"})
  70. text = text.strip()
  71. if not text:
  72. return jsonify({"error": "error text"})
  73. resource = get_resource_manager()
  74. # generate doc id
  75. if ori_doc_id:
  76. body["re_chunk"] = True
  77. doc_id = ori_doc_id
  78. else:
  79. doc_id = f"doc-{uuid.uuid4()}"
  80. chunk_task = ChunkEmbeddingTask(doc_id=doc_id, resource=resource)
  81. doc_id = await chunk_task.deal(body)
  82. return jsonify({"doc_id": doc_id})
  83. @server_bp.route("/chunk_book", methods=["POST"])
  84. async def chunk_book():
  85. body = await request.get_json()
  86. resource = get_resource_manager()
  87. doc_id = f"doc-{uuid.uuid4()}"
  88. chunk_task = ChunkBooksTask(doc_id=doc_id, resource=resource)
  89. doc_id = await chunk_task.deal(body)
  90. return jsonify({"doc_id": doc_id})
  91. @server_bp.route("/search", methods=["POST"])
  92. async def search():
  93. """
  94. filters: Dict[str, Any], # 条件过滤
  95. query_vec: List[float], # query 的向量
  96. anns_field: str = "vector_text", # query指定的向量空间
  97. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  98. query_text: str = None, #是否通过 topic 倒排
  99. _source=False, # 是否返回元数据
  100. es_size: int = 10000, #es 第一层过滤数量
  101. sort_by: str = None, # 排序
  102. milvus_size: int = 10 # milvus粗排返回数量
  103. :return:
  104. """
  105. body = await request.get_json()
  106. # 解析数据
  107. search_type: str = body.get("search_type")
  108. filters: Dict[str, Any] = body.get("filters", {})
  109. anns_field: str = body.get("anns_field", "vector_text")
  110. search_params: Dict[str, Any] = body.get("search_params", BASE_MILVUS_SEARCH_PARAMS)
  111. query_text: str = body.get("query_text")
  112. _source: bool = body.get("_source", False)
  113. es_size: int = body.get("es_size", 10000)
  114. sort_by: str = body.get("sort_by")
  115. milvus_size: int = body.get("milvus", 20)
  116. limit: int = body.get("limit", 10)
  117. path_between_chunks: dict = body.get("path_between_chunks", {})
  118. if not query_text:
  119. return jsonify({"error": "error query_text"})
  120. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  121. resource = get_resource_manager()
  122. search_engine = HybridSearch(
  123. milvus_pool=resource.milvus_client,
  124. es_pool=resource.es_client,
  125. graph_pool=resource.graph_client,
  126. )
  127. try:
  128. match search_type:
  129. case "base":
  130. response = await search_engine.base_vector_search(
  131. query_vec=query_vector,
  132. anns_field=anns_field,
  133. search_params=search_params,
  134. limit=limit,
  135. )
  136. return jsonify(response), 200
  137. case "hybrid":
  138. response = await search_engine.hybrid_search(
  139. filters=filters,
  140. query_vec=query_vector,
  141. anns_field=anns_field,
  142. search_params=search_params,
  143. es_size=es_size,
  144. sort_by=sort_by,
  145. milvus_size=milvus_size,
  146. )
  147. return jsonify(response), 200
  148. case "hybrid2":
  149. co_fields = {"Entity": filters["entities"][0]}
  150. response = await search_engine.hybrid_search_with_graph(
  151. filters=filters,
  152. query_vec=query_vector,
  153. anns_field=anns_field,
  154. search_params=search_params,
  155. es_size=es_size,
  156. sort_by=sort_by,
  157. milvus_size=milvus_size,
  158. co_occurrence_fields=co_fields,
  159. shortest_path_fields=path_between_chunks,
  160. )
  161. return jsonify(response), 200
  162. case "strategy":
  163. return jsonify({"error": "strategy not implemented"}), 405
  164. case _:
  165. return jsonify({"error": "error search_type"}), 200
  166. except Exception as e:
  167. return jsonify({"error": str(e), "traceback": traceback.format_exc()}), 500
  168. @server_bp.route("/dataset/list", methods=["GET"])
  169. async def dataset_list():
  170. resource = get_resource_manager()
  171. datasets = await Dataset(resource.mysql_client).select_dataset()
  172. # 创建所有任务
  173. tasks = [
  174. Contents(resource.mysql_client).select_count(dataset["id"])
  175. for dataset in datasets
  176. ]
  177. counts = await asyncio.gather(*tasks)
  178. # 组装数据
  179. data_list = [
  180. {
  181. "dataset_id": dataset["id"],
  182. "name": dataset["name"],
  183. "count": count,
  184. "created_at": dataset["created_at"].strftime("%Y-%m-%d"),
  185. }
  186. for dataset, count in zip(datasets, counts)
  187. ]
  188. return jsonify({"status_code": 200, "detail": "success", "data": data_list})
  189. @server_bp.route("/dataset/add", methods=["POST"])
  190. async def add_dataset():
  191. resource = get_resource_manager()
  192. dataset_mapper = Dataset(resource.mysql_client)
  193. # 从请求体里取参数
  194. body = await request.get_json()
  195. name = body.get("name")
  196. if not name:
  197. return jsonify({"status_code": 400, "detail": "name is required"})
  198. # 执行新增
  199. dataset = await dataset_mapper.select_dataset_by_name(name)
  200. if dataset:
  201. return jsonify({"status_code": 400, "detail": "name is exist"})
  202. await dataset_mapper.add_dataset(name)
  203. new_dataset = await dataset_mapper.select_dataset_by_name(name)
  204. return jsonify(
  205. {
  206. "status_code": 200,
  207. "detail": "success",
  208. "data": {"datasetId": new_dataset[0]["id"]},
  209. }
  210. )
  211. @server_bp.route("/content/get", methods=["GET"])
  212. async def get_content():
  213. resource = get_resource_manager()
  214. contents = Contents(resource.mysql_client)
  215. # 获取请求参数
  216. doc_id = request.args.get("docId")
  217. if not doc_id:
  218. return jsonify({"status_code": 400, "detail": "doc_id is required", "data": {}})
  219. # 查询内容
  220. rows = await contents.select_content_by_doc_id(doc_id)
  221. if not rows:
  222. return jsonify({"status_code": 404, "detail": "content not found", "data": {}})
  223. row = rows[0]
  224. oss_client = OSSClient()
  225. return jsonify(
  226. {
  227. "status_code": 200,
  228. "detail": "success",
  229. "data": {
  230. "title": row.get("title", ""),
  231. "text": row.get("text", ""),
  232. "doc_id": row.get("doc_id", ""),
  233. "textType": row.get("text_type"),
  234. "url": oss_client.generate_url(row.get("text"))
  235. if row.get("text_type") == 3
  236. else "",
  237. },
  238. }
  239. )
  240. @server_bp.route("/content/list", methods=["GET"])
  241. async def content_list():
  242. resource = get_resource_manager()
  243. contents = Contents(resource.mysql_client)
  244. # 从 URL 查询参数获取分页和过滤参数
  245. page_num = int(request.args.get("page", 1))
  246. page_size = int(request.args.get("pageSize", 10))
  247. dataset_id = request.args.get("datasetId")
  248. doc_status = int(request.args.get("doc_status", 1))
  249. # order_by 可以用 JSON 字符串传递
  250. import json
  251. order_by_str = request.args.get("order_by", '{"id":"desc"}')
  252. try:
  253. order_by = json.loads(order_by_str)
  254. except Exception:
  255. order_by = {"id": "desc"}
  256. # 调用 select_contents,获取分页字典
  257. result = await contents.select_contents(
  258. page_num=page_num,
  259. page_size=page_size,
  260. dataset_id=dataset_id,
  261. doc_status=doc_status,
  262. order_by=order_by,
  263. )
  264. oss_client = OSSClient()
  265. # 格式化 entities,只保留必要字段
  266. entities = [
  267. {
  268. "doc_id": row["doc_id"],
  269. "title": row.get("title") or "",
  270. "text": row.get("text") or "",
  271. "statusDesc": "可用" if row.get("status") == 2 else "不可用",
  272. "textType": row.get("text_type"),
  273. "url": oss_client.generate_url(row.get("text"))
  274. if row.get("text_type") == 3
  275. else "",
  276. }
  277. for row in result["entities"]
  278. ]
  279. return jsonify(
  280. {
  281. "status_code": 200,
  282. "detail": "success",
  283. "data": {
  284. "entities": entities,
  285. "total_count": result["total_count"],
  286. "page": result["page"],
  287. "page_size": result["page_size"],
  288. "total_pages": result["total_pages"],
  289. },
  290. }
  291. )
  292. @server_bp.route("/query", methods=["GET"])
  293. async def query():
  294. query_text = request.args.get("query")
  295. dataset_ids = request.args.get("datasetIds").split(",")
  296. search_type = request.args.get("search_type", "hybrid")
  297. query_results = await query_search(
  298. query_text=query_text,
  299. filters={"dataset_id": dataset_ids},
  300. search_type=search_type,
  301. )
  302. resource = get_resource_manager()
  303. dataset_mapper = Dataset(resource.mysql_client)
  304. for result in query_results:
  305. datasets = await dataset_mapper.select_dataset_by_id(result["datasetId"])
  306. if datasets:
  307. dataset_name = datasets[0]["name"]
  308. result["datasetName"] = dataset_name
  309. data = {"results": query_results}
  310. return jsonify({"status_code": 200, "detail": "success", "data": data})
  311. @server_bp.route("/chat", methods=["GET"])
  312. async def chat():
  313. query_text = request.args.get("query")
  314. dataset_id_strs = request.args.get("datasetIds")
  315. dataset_ids = dataset_id_strs.split(",")
  316. search_type = request.args.get("search_type", "hybrid")
  317. query_results = await query_search(
  318. query_text=query_text,
  319. filters={"dataset_id": dataset_ids},
  320. search_type=search_type,
  321. )
  322. resource = get_resource_manager()
  323. chat_result_mapper = ChatResult(resource.mysql_client)
  324. dataset_mapper = Dataset(resource.mysql_client)
  325. for result in query_results:
  326. datasets = await dataset_mapper.select_dataset_by_id(result["datasetId"])
  327. if datasets:
  328. dataset_name = datasets[0]["name"]
  329. result["datasetName"] = dataset_name
  330. rag_chat_agent = RAGChatAgent()
  331. qwen_client = QwenClient()
  332. chat_task = rag_chat_agent.get_chat_res(query_text, query_results)
  333. llm_task = qwen_client.search_and_chat(
  334. user_prompt=query_text, search_strategy="agent"
  335. )
  336. chat_result, llm_search = await asyncio.gather(chat_task, llm_task)
  337. decision = await rag_chat_agent.make_decision(query_text, chat_result, llm_search)
  338. data = {
  339. "results": query_results,
  340. "chat_res": decision["result"],
  341. "rag_summary": chat_result["summary"],
  342. "llm_summary": llm_search["content"],
  343. # "used_tools": decision["used_tools"],
  344. }
  345. await chat_result_mapper.insert_chat_result(
  346. query_text,
  347. dataset_id_strs,
  348. json.dumps(query_results, ensure_ascii=False),
  349. chat_result["summary"],
  350. decision["relevance_score"],
  351. chat_result["status"],
  352. llm_search["content"],
  353. json.dumps(llm_search["search_results"], ensure_ascii=False),
  354. 1,
  355. decision["result"],
  356. is_web=1,
  357. )
  358. return jsonify({"status_code": 200, "detail": "success", "data": data})
  359. @server_bp.route("/chunk/list", methods=["GET"])
  360. async def chunk_list():
  361. resource = get_resource_manager()
  362. content_chunk = ContentChunks(resource.mysql_client)
  363. # 从 URL 查询参数获取分页和过滤参数
  364. page_num = int(request.args.get("page", 1))
  365. page_size = int(request.args.get("pageSize", 10))
  366. doc_id = request.args.get("docId")
  367. if not doc_id:
  368. return jsonify({"status_code": 500, "detail": "docId not found", "data": {}})
  369. # 调用 select_contents,获取分页字典
  370. result = await content_chunk.select_chunk_contents(
  371. page_num=page_num, page_size=page_size, doc_id=doc_id
  372. )
  373. if not result:
  374. return jsonify({"status_code": 500, "detail": "chunk is empty", "data": {}})
  375. # 格式化 entities,只保留必要字段
  376. entities = [
  377. {
  378. "id": row["id"],
  379. "chunk_id": row["chunk_id"],
  380. "doc_id": row["doc_id"],
  381. "summary": row.get("summary") or "",
  382. "text": row.get("text") or "",
  383. "statusDesc": "可用" if row.get("chunk_status") == 2 else "不可用",
  384. }
  385. for row in result["entities"]
  386. ]
  387. return jsonify(
  388. {
  389. "status_code": 200,
  390. "detail": "success",
  391. "data": {
  392. "entities": entities,
  393. "total_count": result["total_count"],
  394. "page": result["page"],
  395. "page_size": result["page_size"],
  396. "total_pages": result["total_pages"],
  397. },
  398. }
  399. )
  400. @server_bp.route("/auto_rechunk", methods=["GET"])
  401. async def auto_rechunk():
  402. resource = get_resource_manager()
  403. auto_rechunk_task = AutoRechunkTask(mysql_client=resource.mysql_client)
  404. process_cnt = await auto_rechunk_task.deal()
  405. return jsonify({"status_code": 200, "detail": "success", "cnt": process_cnt})
  406. @server_bp.route("/build_graph", methods=["POST"])
  407. async def delete_task():
  408. body = await request.get_json()
  409. doc_id: str = body.get("doc_id")
  410. dataset_id: str = body.get("dataset_id", 12)
  411. batch: bool = body.get("batch_process", False)
  412. resource = get_resource_manager()
  413. build_graph_task = BuildGraph(
  414. neo4j=resource.graph_client,
  415. es_client=resource.es_client,
  416. mysql_client=resource.mysql_client,
  417. )
  418. if batch:
  419. await build_graph_task.deal_batch(dataset_id)
  420. else:
  421. await build_graph_task.deal(doc_id)
  422. return jsonify({"status_code": 200, "detail": "success", "data": {}})
  423. @server_bp.route("/rag/search", methods=["POST"])
  424. async def rag_search():
  425. body = await request.get_json()
  426. query_text = body.get("queryText")
  427. split_questions = []
  428. split_questions.append(query_text)
  429. resource = get_resource_manager()
  430. qwen_client = QwenClient()
  431. rag_chat_agent = RAGChatAgent()
  432. # 使用asyncio.gather并行处理每个问题
  433. tasks = [
  434. process_question(question, resource, qwen_client, rag_chat_agent)
  435. for question in split_questions
  436. ]
  437. # 等待所有任务完成并收集结果
  438. data_list = await asyncio.gather(*tasks)
  439. return jsonify({"status_code": 200, "detail": "success", "data": data_list})
  440. @server_bp.route("/chat/history", methods=["GET"])
  441. async def chat_history():
  442. page_num = int(request.args.get("page", 1))
  443. page_size = int(request.args.get("pageSize", 10))
  444. resource = get_resource_manager()
  445. chat_result_mapper = ChatResult(resource.mysql_client)
  446. result = await chat_result_mapper.select_chat_results(page_num, page_size)
  447. return jsonify(
  448. {
  449. "status_code": 200,
  450. "detail": "success",
  451. "data": {
  452. "entities": result["entities"],
  453. "total_count": result["total_count"],
  454. "page": result["page"],
  455. "page_size": result["page_size"],
  456. "total_pages": result["total_pages"],
  457. },
  458. }
  459. )
  460. @server_bp.route("/upload/file", methods=["POST"])
  461. async def upload_pdf():
  462. # 获取前端上传的文件
  463. # 先等待 request.files 属性来确保文件已加载
  464. files = await request.files
  465. form = await request.form # 这是一个协程对象,需要用 await 等待
  466. dataset_id = form.get("dataset_id") # 获取表单中的 "dataset_id" 参数
  467. # 获取文件对象
  468. file = files.get("file")
  469. if file:
  470. # 检查文件扩展名是否是 .pdf
  471. if not file.filename.lower().endswith(".pdf"):
  472. return jsonify(
  473. {"status_code": 400, "detail": "Only PDF files are allowed."}
  474. )
  475. # 获取文件名
  476. filename = file.filename
  477. book_id = f"book-{uuid.uuid4()}"
  478. # 检查文件的 MIME 类型是否是 application/pdf
  479. if file.content_type != "application/pdf":
  480. return jsonify(
  481. {"status_code": 400, "detail": "Only PDF files are allowed."}
  482. )
  483. # 保存到本地(可选,视需要)
  484. file_path = os.path.join("/tmp", book_id + ".pdf") # 临时存储路径
  485. await file.save(file_path)
  486. resource = get_resource_manager()
  487. books = Books(resource.mysql_client)
  488. content_manager = Contents(resource.mysql_client)
  489. # 上传到 OSS
  490. try:
  491. oss_client = OSSClient()
  492. # 上传文件到 OSS
  493. oss_path = f"rag/pdfs/{book_id}.pdf"
  494. oss_client.upload_file(file_path, oss_path)
  495. doc_id = f"doc-{uuid.uuid4()}"
  496. BOOK_PDF_TYPE = 3
  497. await content_manager.insert_content(
  498. doc_id, oss_path, BOOK_PDF_TYPE, filename, dataset_id, None
  499. )
  500. await books.insert_book(book_id, filename, oss_path, doc_id, dataset_id)
  501. return jsonify({"status_code": 200, "detail": "success"})
  502. except Exception as e:
  503. return jsonify({"status_code": 500, "detail": str(e)})
  504. else:
  505. return jsonify({"status_code": 400, "detail": "No file uploaded."})
  506. @server_bp.route("/process/book", methods=["GET"])
  507. async def process_book():
  508. # 创建异步任务来后台处理书籍
  509. asyncio.create_task(handle_books())
  510. # 返回立即响应
  511. return jsonify({"status": "success", "message": "任务已提交后台处理"}), 200
  512. @server_bp.route("/record/pattern", methods=["POST"])
  513. async def record_pattern():
  514. body = await request.get_json()
  515. pattern = body.get("pattern", {})
  516. resource = get_resource_manager()
  517. record_pattern_task = RecordPattern(resource)
  518. await record_pattern_task.deal(pattern)
  519. return jsonify({"status_code": 200, "detail": "success", "data": {}})