field.py 976 B

12345678910111213141516171819202122232425262728293031323334353637383940
  1. from pymilvus import FieldSchema, DataType
  2. # milvus 向量数据库
  3. fields = [
  4. # 主键 ID
  5. FieldSchema(
  6. name="id",
  7. dtype=DataType.INT64,
  8. is_primary=True,
  9. auto_id=True,
  10. description="自增id",
  11. ),
  12. # 文档 id 字段
  13. FieldSchema(
  14. name="doc_id", dtype=DataType.VARCHAR, max_length=64, description="文档id"
  15. ),
  16. FieldSchema(name="chunk_id", dtype=DataType.INT64, description="文档分块id"),
  17. # 三种向量字段
  18. FieldSchema(
  19. name="vector_text",
  20. dtype=DataType.FLOAT_VECTOR,
  21. dim=2560,
  22. description="chunk文本 embedding",
  23. ),
  24. FieldSchema(
  25. name="vector_summary",
  26. dtype=DataType.FLOAT_VECTOR,
  27. dim=2560,
  28. description="总结 embedding",
  29. ),
  30. FieldSchema(
  31. name="vector_questions",
  32. dtype=DataType.FLOAT_VECTOR,
  33. dim=2560,
  34. description="衍生问题 embedding",
  35. ),
  36. ]
  37. __all__ = ["fields"]