hybrid_search.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. from typing import List, Dict, Optional, Any
  2. from .base_search import BaseSearch
  3. from applications.utils.elastic_search import ElasticSearchStrategy
  4. class HybridSearch(BaseSearch):
  5. def __init__(self, milvus_pool, es_pool):
  6. super().__init__(milvus_pool, es_pool)
  7. self.es_strategy = ElasticSearchStrategy(self.es_pool)
  8. async def hybrid_search(
  9. self,
  10. filters: Dict[str, Any], # 条件过滤
  11. query_vec: List[float], # query 的向量
  12. anns_field: str = "vector_text", # query指定的向量空间
  13. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  14. query_text: str = None, # 是否通过 topic 倒排
  15. _source=False, # 是否返回元数据
  16. es_size: int = 10000, # es 第一层过滤数量
  17. sort_by: str = None, # 排序
  18. milvus_size: int = 10, # milvus粗排返回数量
  19. ):
  20. milvus_ids = await self.es_strategy.base_search(
  21. filters=filters,
  22. text_query=query_text,
  23. _source=_source,
  24. size=es_size,
  25. sort_by=sort_by,
  26. )
  27. if not milvus_ids:
  28. return {"results": []}
  29. milvus_ids_list = ",".join(milvus_ids)
  30. expr = f"id in [{milvus_ids_list}]"
  31. return await self.base_vector_search(
  32. query_vec=query_vec,
  33. anns_field=anns_field,
  34. limit=milvus_size,
  35. expr=expr,
  36. search_params=search_params,
  37. )