buleprint.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. import asyncio
  2. import traceback
  3. import uuid
  4. from typing import Dict, Any
  5. from quart import Blueprint, jsonify, request
  6. from quart_cors import cors
  7. from applications.config import (
  8. DEFAULT_MODEL,
  9. LOCAL_MODEL_CONFIG,
  10. ChunkerConfig,
  11. BASE_MILVUS_SEARCH_PARAMS,
  12. )
  13. from applications.resource import get_resource_manager
  14. from applications.api import get_basic_embedding
  15. from applications.api import get_img_embedding
  16. from applications.async_task import ChunkEmbeddingTask, DeleteTask
  17. from applications.search import HybridSearch
  18. from applications.utils.chat import ChatClassifier
  19. from applications.utils.mysql import Dataset, Contents, ContentChunks
  20. server_bp = Blueprint("api", __name__, url_prefix="/api")
  21. server_bp = cors(server_bp, allow_origin="*")
  22. @server_bp.route("/embed", methods=["POST"])
  23. async def embed():
  24. body = await request.get_json()
  25. text = body.get("text")
  26. model_name = body.get("model", DEFAULT_MODEL)
  27. if not LOCAL_MODEL_CONFIG.get(model_name):
  28. return jsonify({"error": "error model"})
  29. embedding = await get_basic_embedding(text, model_name)
  30. return jsonify({"embedding": embedding})
  31. @server_bp.route("/img_embed", methods=["POST"])
  32. async def img_embed():
  33. body = await request.get_json()
  34. url_list = body.get("url_list")
  35. if not url_list:
  36. return jsonify({"error": "error url_list"})
  37. embedding = await get_img_embedding(url_list)
  38. return jsonify(embedding)
  39. @server_bp.route("/delete", methods=["POST"])
  40. async def delete():
  41. body = await request.get_json()
  42. level = body.get("level")
  43. params = body.get("params")
  44. if not level or not params:
  45. return jsonify({"error": "error level or params"})
  46. resource = get_resource_manager()
  47. delete_task = DeleteTask(resource)
  48. response = await delete_task.deal(level, params)
  49. return jsonify(response)
  50. @server_bp.route("/chunk", methods=["POST"])
  51. async def chunk():
  52. body = await request.get_json()
  53. text = body.get("text", "")
  54. text = text.strip()
  55. if not text:
  56. return jsonify({"error": "error text"})
  57. resource = get_resource_manager()
  58. doc_id = f"doc-{uuid.uuid4()}"
  59. chunk_task = ChunkEmbeddingTask(doc_id=doc_id, resource=resource)
  60. doc_id = await chunk_task.deal(body)
  61. return jsonify({"doc_id": doc_id})
  62. @server_bp.route("/search", methods=["POST"])
  63. async def search():
  64. """
  65. filters: Dict[str, Any], # 条件过滤
  66. query_vec: List[float], # query 的向量
  67. anns_field: str = "vector_text", # query指定的向量空间
  68. search_params: Optional[Dict[str, Any]] = None, # 向量距离方式
  69. query_text: str = None, #是否通过 topic 倒排
  70. _source=False, # 是否返回元数据
  71. es_size: int = 10000, #es 第一层过滤数量
  72. sort_by: str = None, # 排序
  73. milvus_size: int = 10 # milvus粗排返回数量
  74. :return:
  75. """
  76. body = await request.get_json()
  77. # 解析数据
  78. search_type: str = body.get("search_type")
  79. filters: Dict[str, Any] = body.get("filters", {})
  80. anns_field: str = body.get("anns_field", "vector_text")
  81. search_params: Dict[str, Any] = body.get("search_params", BASE_MILVUS_SEARCH_PARAMS)
  82. query_text: str = body.get("query_text")
  83. _source: bool = body.get("_source", False)
  84. es_size: int = body.get("es_size", 10000)
  85. sort_by: str = body.get("sort_by")
  86. milvus_size: int = body.get("milvus", 20)
  87. limit: int = body.get("limit", 10)
  88. if not query_text:
  89. return jsonify({"error": "error query_text"})
  90. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  91. resource = get_resource_manager()
  92. search_engine = HybridSearch(
  93. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  94. )
  95. try:
  96. match search_type:
  97. case "base":
  98. response = await search_engine.base_vector_search(
  99. query_vec=query_vector,
  100. anns_field=anns_field,
  101. search_params=search_params,
  102. limit=limit,
  103. )
  104. return jsonify(response), 200
  105. case "hybrid":
  106. response = await search_engine.hybrid_search(
  107. filters=filters,
  108. query_vec=query_vector,
  109. anns_field=anns_field,
  110. search_params=search_params,
  111. es_size=es_size,
  112. sort_by=sort_by,
  113. milvus_size=milvus_size,
  114. )
  115. return jsonify(response), 200
  116. case "strategy":
  117. return jsonify({"error": "strategy not implemented"}), 405
  118. case _:
  119. return jsonify({"error": "error search_type"}), 200
  120. except Exception as e:
  121. return jsonify({"error": str(e), "traceback": traceback.format_exc()}), 500
  122. @server_bp.route("/dataset/list", methods=["GET"])
  123. async def dataset_list():
  124. resource = get_resource_manager()
  125. datasets = await Dataset(resource.mysql_client).select_dataset()
  126. # 创建所有任务
  127. tasks = [
  128. Contents(resource.mysql_client).select_count(dataset["id"])
  129. for dataset in datasets
  130. ]
  131. counts = await asyncio.gather(*tasks)
  132. # 组装数据
  133. data_list = [
  134. {
  135. "dataset_id": dataset["id"],
  136. "name": dataset["name"],
  137. "count": count,
  138. "created_at": dataset["created_at"].strftime("%Y-%m-%d"),
  139. }
  140. for dataset, count in zip(datasets, counts)
  141. ]
  142. return jsonify({"status_code": 200, "detail": "success", "data": data_list})
  143. @server_bp.route("/dataset/add", methods=["POST"])
  144. async def add_dataset():
  145. resource = get_resource_manager()
  146. dataset = Dataset(resource.mysql_client)
  147. # 从请求体里取参数
  148. body = await request.get_json()
  149. name = body.get("name")
  150. if not name:
  151. return jsonify({"status_code": 400, "detail": "name is required"})
  152. # 执行新增
  153. await dataset.add_dataset(name)
  154. return jsonify({"status_code": 200, "detail": "success"})
  155. @server_bp.route("/content/get", methods=["GET"])
  156. async def get_content():
  157. resource = get_resource_manager()
  158. contents = Contents(resource.mysql_client)
  159. # 获取请求参数
  160. doc_id = request.args.get("docId")
  161. if not doc_id:
  162. return jsonify({"status_code": 400, "detail": "doc_id is required", "data": {}})
  163. # 查询内容
  164. rows = await contents.select_content_by_doc_id(doc_id)
  165. if not rows:
  166. return jsonify({"status_code": 404, "detail": "content not found", "data": {}})
  167. row = rows[0]
  168. return jsonify(
  169. {
  170. "status_code": 200,
  171. "detail": "success",
  172. "data": {
  173. "title": row.get("title", ""),
  174. "text": row.get("text", ""),
  175. "doc_id": row.get("doc_id", ""),
  176. },
  177. }
  178. )
  179. @server_bp.route("/content/list", methods=["GET"])
  180. async def content_list():
  181. resource = get_resource_manager()
  182. contents = Contents(resource.mysql_client)
  183. # 从 URL 查询参数获取分页和过滤参数
  184. page_num = int(request.args.get("page", 1))
  185. page_size = int(request.args.get("pageSize", 10))
  186. dataset_id = request.args.get("datasetId")
  187. doc_status = int(request.args.get("doc_status", 1))
  188. # order_by 可以用 JSON 字符串传递
  189. import json
  190. order_by_str = request.args.get("order_by", '{"id":"desc"}')
  191. try:
  192. order_by = json.loads(order_by_str)
  193. except Exception:
  194. order_by = {"id": "desc"}
  195. # 调用 select_contents,获取分页字典
  196. result = await contents.select_contents(
  197. page_num=page_num,
  198. page_size=page_size,
  199. dataset_id=dataset_id,
  200. doc_status=doc_status,
  201. order_by=order_by,
  202. )
  203. # 格式化 entities,只保留必要字段
  204. entities = [
  205. {
  206. "doc_id": row["doc_id"],
  207. "title": row.get("title") or "",
  208. "text": row.get("text") or "",
  209. }
  210. for row in result["entities"]
  211. ]
  212. return jsonify(
  213. {
  214. "status_code": 200,
  215. "detail": "success",
  216. "data": {
  217. "entities": entities,
  218. "total_count": result["total_count"],
  219. "page": result["page"],
  220. "page_size": result["page_size"],
  221. "total_pages": result["total_pages"],
  222. },
  223. }
  224. )
  225. async def query_search(
  226. query_text,
  227. filters=None,
  228. search_type="",
  229. anns_field="vector_text",
  230. search_params=BASE_MILVUS_SEARCH_PARAMS,
  231. _source=False,
  232. es_size=10000,
  233. sort_by=None,
  234. milvus_size=20,
  235. limit=10,
  236. ):
  237. if filters is None:
  238. filters = {}
  239. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  240. resource = get_resource_manager()
  241. search_engine = HybridSearch(
  242. milvus_pool=resource.milvus_client, es_pool=resource.es_client
  243. )
  244. try:
  245. match search_type:
  246. case "base":
  247. response = await search_engine.base_vector_search(
  248. query_vec=query_vector,
  249. anns_field=anns_field,
  250. search_params=search_params,
  251. limit=limit,
  252. )
  253. return response
  254. case "hybrid":
  255. response = await search_engine.hybrid_search(
  256. filters=filters,
  257. query_vec=query_vector,
  258. anns_field=anns_field,
  259. search_params=search_params,
  260. es_size=es_size,
  261. sort_by=sort_by,
  262. milvus_size=milvus_size,
  263. )
  264. return response
  265. case "strategy":
  266. return None
  267. case _:
  268. return None
  269. except Exception as e:
  270. return None
  271. @server_bp.route("/query", methods=["GET"])
  272. async def query():
  273. query_text = request.args.get("query")
  274. dataset_ids = request.args.get("datasetIds").split(",")
  275. search_type = request.args.get("search_type", "hybrid")
  276. query_results = await query_search(
  277. query_text=query_text,
  278. filters={"dataset_id": dataset_ids},
  279. search_type=search_type,
  280. )
  281. resource = get_resource_manager()
  282. content_chunk_mapper = ContentChunks(resource.mysql_client)
  283. dataset_mapper = Dataset(resource.mysql_client)
  284. res = []
  285. for result in query_results["results"]:
  286. content_chunks = await content_chunk_mapper.select_chunk_content(
  287. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  288. )
  289. if not content_chunks:
  290. return jsonify(
  291. {"status_code": 500, "detail": "content_chunk not found", "data": {}}
  292. )
  293. content_chunk = content_chunks[0]
  294. datasets = await dataset_mapper.select_dataset_by_id(
  295. content_chunk["dataset_id"]
  296. )
  297. if not datasets:
  298. return jsonify(
  299. {"status_code": 500, "detail": "dataset not found", "data": {}}
  300. )
  301. dataset = datasets[0]
  302. dataset_name = None
  303. if dataset:
  304. dataset_name = dataset["name"]
  305. res.append(
  306. {
  307. "docId": content_chunk["doc_id"],
  308. "content": content_chunk["text"],
  309. "contentSummary": content_chunk["summary"],
  310. "score": result["score"],
  311. "datasetName": dataset_name,
  312. }
  313. )
  314. data = {"results": res}
  315. return jsonify({"status_code": 200, "detail": "success", "data": data})
  316. @server_bp.route("/chat", methods=["GET"])
  317. async def chat():
  318. query_text = request.args.get("query")
  319. dataset_ids = request.args.get("datasetIds").split(",")
  320. search_type = request.args.get("search_type", "hybrid")
  321. query_results = await query_search(
  322. query_text=query_text,
  323. filters={"dataset_id": dataset_ids},
  324. search_type=search_type,
  325. )
  326. resource = get_resource_manager()
  327. content_chunk_mapper = ContentChunks(resource.mysql_client)
  328. dataset_mapper = Dataset(resource.mysql_client)
  329. res = []
  330. for result in query_results["results"]:
  331. content_chunks = await content_chunk_mapper.select_chunk_content(
  332. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  333. )
  334. if not content_chunks:
  335. return jsonify(
  336. {"status_code": 500, "detail": "content_chunk not found", "data": {}}
  337. )
  338. content_chunk = content_chunks[0]
  339. datasets = await dataset_mapper.select_dataset_by_id(
  340. content_chunk["dataset_id"]
  341. )
  342. if not datasets:
  343. return jsonify(
  344. {"status_code": 500, "detail": "dataset not found", "data": {}}
  345. )
  346. dataset = datasets[0]
  347. dataset_name = None
  348. if dataset:
  349. dataset_name = dataset["name"]
  350. res.append(
  351. {
  352. "docId": content_chunk["doc_id"],
  353. "content": content_chunk["text"],
  354. "contentSummary": content_chunk["summary"],
  355. "score": result["score"],
  356. "datasetName": dataset_name,
  357. }
  358. )
  359. chat_classifier = ChatClassifier()
  360. chat_res = await chat_classifier.chat_with_deepseek(query_text, res)
  361. data = {"results": res, "chat_res": chat_res}
  362. return jsonify({"status_code": 200, "detail": "success", "data": data})