async_task.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. import json
  2. import os
  3. import uuid
  4. from applications.api import get_basic_embedding
  5. from applications.api.qwen import QwenClient
  6. from applications.async_task import ChunkBooksTask
  7. from applications.config import BASE_MILVUS_SEARCH_PARAMS, DEFAULT_MODEL
  8. from applications.resource import get_resource_manager
  9. from applications.search import HybridSearch
  10. from applications.utils.mysql import Books, ChatResult, ContentChunks
  11. from applications.utils.oss.oss_client import OSSClient
  12. from applications.utils.pdf.book_extract import book_extract
  13. from applications.utils.spider.study import study
  14. async def handle_books():
  15. try:
  16. # 获取资源管理器和客户端
  17. resource = get_resource_manager()
  18. books_mapper = Books(resource.mysql_client)
  19. oss_client = OSSClient()
  20. # 获取待处理的书籍列表
  21. books = await books_mapper.select_init_books()
  22. for book in books:
  23. book_id = book.get("book_id")
  24. doc_id = book.get("doc_id")
  25. # 获取提取状态
  26. extract_status = (await books_mapper.select_book_extract_status(book_id))[
  27. 0
  28. ].get("extract_status")
  29. if extract_status == 0:
  30. # 更新提取状态为处理中
  31. await books_mapper.update_book_extract_status(book_id, 1)
  32. book_path = os.path.join("/tmp", book_id + ".pdf")
  33. if not os.path.exists(book_path):
  34. oss_path = f"rag/pdfs/{book_id}.pdf"
  35. try:
  36. # 下载书籍文件
  37. await oss_client.download_file(oss_path, book_path)
  38. except Exception as e:
  39. continue # 如果下载失败,跳过该书籍
  40. try:
  41. # 提取书籍内容
  42. res = await book_extract(book_path, book_id)
  43. if res:
  44. content_list = (
  45. res.get("results", {})
  46. .get(book_id, {})
  47. .get("content_list", [])
  48. )
  49. if content_list:
  50. # 更新提取结果
  51. await books_mapper.update_book_extract_result(
  52. book_id,
  53. json.dumps(
  54. json.loads(content_list), ensure_ascii=False
  55. ),
  56. )
  57. except Exception as e:
  58. await books_mapper.update_book_extract_status(book_id, 99)
  59. continue # 如果提取过程失败,跳过该书籍
  60. # 创建文档 ID
  61. chunk_task = ChunkBooksTask(doc_id=doc_id, resource=resource)
  62. # 处理分片任务
  63. body = {"book_id": book_id}
  64. await chunk_task.deal(body) # 异步执行分片任务
  65. except Exception as e:
  66. # 捕获整体异常
  67. print(f"处理请求失败,错误: {e}")
  68. async def process_question(question, query_text, rag_chat_agent):
  69. try:
  70. dataset_id_strs = "11,12"
  71. dataset_ids = dataset_id_strs.split(",")
  72. search_type = "hybrid"
  73. # 执行查询任务
  74. query_results = await query_search(
  75. query_text=question,
  76. filters={"dataset_id": dataset_ids},
  77. search_type=search_type,
  78. )
  79. resource = get_resource_manager()
  80. chat_result_mapper = ChatResult(resource.mysql_client)
  81. # 异步执行 chat 与 deepseek 的对话
  82. chat_result = await rag_chat_agent.chat_with_deepseek(question, query_results)
  83. # # 判断是否需要执行 study
  84. study_task_id = None
  85. if chat_result["status"] == 0:
  86. study_task_id = study(question)["task_id"]
  87. qwen_client = QwenClient()
  88. llm_search = qwen_client.search_and_chat(user_prompt=question)
  89. decision = await rag_chat_agent.make_decision(question, chat_result, llm_search)
  90. # 构建返回的数据
  91. data = {
  92. "query": question,
  93. "result": decision["result"],
  94. "status": decision["status"],
  95. "relevance_score": decision["relevance_score"],
  96. # "used_tools": decision["used_tools"],
  97. }
  98. # 插入数据库
  99. await chat_result_mapper.insert_chat_result(
  100. question,
  101. dataset_id_strs,
  102. json.dumps(query_results, ensure_ascii=False),
  103. chat_result["summary"],
  104. chat_result["relevance_score"],
  105. chat_result["status"],
  106. llm_search["content"],
  107. json.dumps(llm_search["search_results"], ensure_ascii=False),
  108. 1,
  109. decision["result"],
  110. study_task_id,
  111. )
  112. return data
  113. except Exception as e:
  114. print(f"Error processing question: {question}. Error: {str(e)}")
  115. return {"query": question, "error": str(e)}
  116. async def query_search(
  117. query_text,
  118. filters=None,
  119. search_type="",
  120. anns_field="vector_text",
  121. search_params=BASE_MILVUS_SEARCH_PARAMS,
  122. _source=False,
  123. es_size=10000,
  124. sort_by=None,
  125. milvus_size=20,
  126. limit=10,
  127. ):
  128. if filters is None:
  129. filters = {}
  130. query_vector = await get_basic_embedding(text=query_text, model=DEFAULT_MODEL)
  131. resource = get_resource_manager()
  132. search_engine = HybridSearch(
  133. milvus_pool=resource.milvus_client,
  134. es_pool=resource.es_client,
  135. graph_pool=resource.graph_client,
  136. )
  137. try:
  138. match search_type:
  139. case "base":
  140. response = await search_engine.base_vector_search(
  141. query_vec=query_vector,
  142. anns_field=anns_field,
  143. search_params=search_params,
  144. limit=limit,
  145. )
  146. return response
  147. case "hybrid":
  148. response = await search_engine.hybrid_search(
  149. filters=filters,
  150. query_vec=query_vector,
  151. anns_field=anns_field,
  152. search_params=search_params,
  153. es_size=es_size,
  154. sort_by=sort_by,
  155. milvus_size=milvus_size,
  156. )
  157. case "strategy":
  158. return None
  159. case _:
  160. return None
  161. except Exception as e:
  162. return None
  163. if response is None:
  164. return None
  165. resource = get_resource_manager()
  166. content_chunk_mapper = ContentChunks(resource.mysql_client)
  167. res = []
  168. print(json.dumps(response["results"], ensure_ascii=False, indent=2))
  169. for result in response["results"]:
  170. content_chunks = await content_chunk_mapper.select_chunk_content(
  171. doc_id=result["doc_id"], chunk_id=result["chunk_id"]
  172. )
  173. if content_chunks:
  174. content_chunk = content_chunks[0]
  175. res.append(
  176. {
  177. "docId": content_chunk["doc_id"],
  178. "content": content_chunk["text"],
  179. "contentSummary": content_chunk["summary"],
  180. "score": result["score"],
  181. "datasetId": content_chunk["dataset_id"],
  182. }
  183. )
  184. return res[:limit]