from pymilvus import FieldSchema, DataType # milvus 向量数据库 fields = [ FieldSchema(name="chunk_id", dtype=DataType.INT64, is_primary=True, auto_id=False), FieldSchema(name="doc_id", dtype=DataType.VARCHAR, max_length=64), # 三种向量字段 FieldSchema(name="vector_text", dtype=DataType.FLOAT_VECTOR, dim=2560), FieldSchema(name="vector_summary", dtype=DataType.FLOAT_VECTOR, dim=2560), FieldSchema(name="vector_questions", dtype=DataType.FLOAT_VECTOR, dim=2560), # metadata FieldSchema(name="topic", dtype=DataType.VARCHAR, max_length=255), FieldSchema(name="domain", dtype=DataType.VARCHAR, max_length=100), FieldSchema(name="task_type", dtype=DataType.VARCHAR, max_length=100), FieldSchema(name="summary", dtype=DataType.VARCHAR, max_length=512), FieldSchema( name="keywords", dtype=DataType.ARRAY, element_type=DataType.VARCHAR, max_length=100, ), FieldSchema( name="concepts", dtype=DataType.ARRAY, element_type=DataType.VARCHAR, max_length=100, ), FieldSchema( name="questions", dtype=DataType.ARRAY, element_type=DataType.VARCHAR, max_length=200, ), FieldSchema(name="topic_purity", dtype=DataType.FLOAT), FieldSchema(name="tokens", dtype=DataType.INT64), ] __all__ = ["fields"]