|
@@ -0,0 +1,158 @@
|
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
|
+# @Author: wangkun
|
|
|
|
+# @Time: 2023/7/21
|
|
|
|
+import cv2
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class MaskWatermark:
|
|
|
|
+ @classmethod
|
|
|
|
+ def find_watermark(cls, image_path):
|
|
|
|
+ """
|
|
|
|
+ 基于OpenCV自动识别水印并获取其位置
|
|
|
|
+ :param image_path:水印
|
|
|
|
+ :return:watermark_area
|
|
|
|
+ """
|
|
|
|
+ # 读取图像
|
|
|
|
+ image = cv2.imread(image_path)
|
|
|
|
+
|
|
|
|
+ # 将图像转换为灰度图像
|
|
|
|
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
+
|
|
|
|
+ # 使用边缘检测算法如Canny来检测图像中的边缘信息
|
|
|
|
+ edges = cv2.Canny(gray, 100, 200)
|
|
|
|
+
|
|
|
|
+ # 使用霍夫变换检测直线,以获得边缘中的直线段
|
|
|
|
+ lines = cv2.HoughLinesP(edges, 1, cv2.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)
|
|
|
|
+
|
|
|
|
+ # 对检测到的直线进行筛选,以识别可能表示水印的直线
|
|
|
|
+ watermark_lines = []
|
|
|
|
+ if lines is not None:
|
|
|
|
+ for line in lines:
|
|
|
|
+ x1, y1, x2, y2 = line[0]
|
|
|
|
+ # 根据实际情况确定水印直线的特征,例如长度、斜率等
|
|
|
|
+ # 这里只是一个示例,您需要根据具体情况进行调整
|
|
|
|
+ if abs(y2 - y1) < 5 and abs(x2 - x1) > 50:
|
|
|
|
+ watermark_lines.append(line)
|
|
|
|
+
|
|
|
|
+ # 根据检测到的水印直线,计算水印区域的位置和大小
|
|
|
|
+ if len(watermark_lines) > 1:
|
|
|
|
+ x_coords = [line[0][0] for line in watermark_lines] + [line[0][2] for line in watermark_lines]
|
|
|
|
+ y_coords = [line[0][1] for line in watermark_lines] + [line[0][3] for line in watermark_lines]
|
|
|
|
+ min_x = min(x_coords)
|
|
|
|
+ max_x = max(x_coords)
|
|
|
|
+ min_y = min(y_coords)
|
|
|
|
+ max_y = max(y_coords)
|
|
|
|
+ watermark_area = (min_x, min_y, max_x - min_x, max_y - min_y) # 水印区域的位置和大小
|
|
|
|
+ else:
|
|
|
|
+ watermark_area = None
|
|
|
|
+
|
|
|
|
+ return watermark_area
|
|
|
|
+
|
|
|
|
+ @classmethod
|
|
|
|
+ def mask_watermark(cls, input_path, output_path, watermark_area):
|
|
|
|
+ # 读取视频
|
|
|
|
+ video = cv2.VideoCapture(input_path)
|
|
|
|
+
|
|
|
|
+ # 获取视频的宽度和高度
|
|
|
|
+ width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
+ height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
+
|
|
|
|
+ # 创建输出视频对象
|
|
|
|
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 可根据需要更换视频编码器
|
|
|
|
+ output = cv2.VideoWriter(output_path, fourcc, 30.0, (width, height))
|
|
|
|
+
|
|
|
|
+ while True:
|
|
|
|
+ ret, frame = video.read()
|
|
|
|
+
|
|
|
|
+ if not ret:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ # 在水印区域替换成其他像素或进行遮挡处理
|
|
|
|
+ x, y, w, h = watermark_area
|
|
|
|
+ frame[y:y + h, x:x + w] = 0 # 这里将水印区域像素设为0,可根据需要进行更复杂的像素替换或遮挡处理
|
|
|
|
+
|
|
|
|
+ # 将处理后的帧写入输出视频
|
|
|
|
+ output.write(frame)
|
|
|
|
+
|
|
|
|
+ # 释放资源
|
|
|
|
+ video.release()
|
|
|
|
+ output.release()
|
|
|
|
+
|
|
|
|
+ print("成功去除水印,并保存为", output_path)
|
|
|
|
+
|
|
|
|
+ @classmethod
|
|
|
|
+ def remove_watermark(cls, video_path, output_path):
|
|
|
|
+ # 读取视频
|
|
|
|
+ video = cv2.VideoCapture(video_path)
|
|
|
|
+
|
|
|
|
+ # 获取视频的宽度和高度
|
|
|
|
+ width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
+ height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
+
|
|
|
|
+ # 创建输出视频对象
|
|
|
|
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 可根据需要更换视频编码器
|
|
|
|
+ output = cv2.VideoWriter(output_path, fourcc, 30.0, (width, height))
|
|
|
|
+
|
|
|
|
+ # 读取第一帧作为背景帧
|
|
|
|
+ ret, background = video.read()
|
|
|
|
+ if not ret:
|
|
|
|
+ print("无法读取背景帧")
|
|
|
|
+ return
|
|
|
|
+
|
|
|
|
+ while True:
|
|
|
|
+ ret, frame = video.read()
|
|
|
|
+
|
|
|
|
+ if not ret:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ # 计算当前帧与背景帧的差值
|
|
|
|
+ diff = cv2.absdiff(frame, background)
|
|
|
|
+
|
|
|
|
+ # 将差值转换为灰度图像
|
|
|
|
+ gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
|
|
|
|
+
|
|
|
|
+ # 应用阈值二值化,通过调整阈值以过滤差异
|
|
|
|
+ _, threshold = cv2.threshold(gray, 25, 255, cv2.THRESH_BINARY)
|
|
|
|
+
|
|
|
|
+ # 进行形态学操作,填充小区域,平滑边缘
|
|
|
|
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
|
|
|
+ dilated = cv2.dilate(threshold, kernel, iterations=3)
|
|
|
|
+
|
|
|
|
+ # 寻找轮廓
|
|
|
|
+ contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
+
|
|
|
|
+ # 去除检测到的水印轮廓区域
|
|
|
|
+ for contour in contours:
|
|
|
|
+ # 这里只是一个示例,您可以根据具体情况进行调整,例如根据轮廓面积、形状等进行过滤
|
|
|
|
+ if cv2.contourArea(contour) > threshold_area:
|
|
|
|
+ # 在当前帧上用背景帧进行填充
|
|
|
|
+ cv2.drawContours(frame, [contour], -1, (0, 0, 0), cv2.FILLED)
|
|
|
|
+
|
|
|
|
+ # 将处理后的帧写入输出视频
|
|
|
|
+ output.write(frame)
|
|
|
|
+
|
|
|
|
+ # 释放资源
|
|
|
|
+ video.release()
|
|
|
|
+ output.release()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ # 示例调用
|
|
|
|
+ image_path = 'image.jpg' # 替换为待识别水印的图像路径
|
|
|
|
+ watermark_area = MaskWatermark.find_watermark(image_path)
|
|
|
|
+ print("水印区域的位置和大小:", watermark_area)
|
|
|
|
+
|
|
|
|
+ # 示例调用
|
|
|
|
+ input_path = 'input.mp4' # 替换为输入视频文件路径
|
|
|
|
+ output_path = 'output.mp4' # 替换为输出视频文件路径
|
|
|
|
+ watermark_area = (100, 100, 200, 200) # 替换为水印区域的位置和大小,表示为 (x, y, width, height)
|
|
|
|
+ MaskWatermark.mask_watermark(input_path, output_path, watermark_area)
|
|
|
|
+
|
|
|
|
+ # 示例调用
|
|
|
|
+ video_path = 'video.mp4' # 替换为视频文件路径
|
|
|
|
+ output_path = 'output.mp4' # 替换为输出视频文件路径
|
|
|
|
+ threshold_area = 1000 # 轮廓区域的阈值,根据具体情况进行调整
|
|
|
|
+ MaskWatermark.remove_watermark(video_path, output_path)
|
|
|
|
+ print("成功去除水印,并保存为", output_path)
|
|
|
|
+
|
|
|
|
+ pass
|