docker-compose.yml 1.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. version: "3.8"
  2. services:
  3. # vLLM - Qwen3 0.6B
  4. vllm-0.6b:
  5. image: vllm/vllm-openai:latest
  6. container_name: vllm-qwen3-0.6b
  7. ports:
  8. - "8100:8000"
  9. command: >
  10. --model Qwen/Qwen3-Embedding-0.6B
  11. --dtype float16
  12. --api-port 8000
  13. volumes:
  14. - ./models:/root/.cache/huggingface
  15. # # vLLM - Qwen3 4B
  16. # vllm-4b:
  17. # image: vllm/vllm-openai:latest
  18. # container_name: vllm-qwen3-4b
  19. # ports:
  20. # - "8200:8000"
  21. # command: >
  22. # --model Qwen/Qwen3-Embedding-4B
  23. # --dtype float16
  24. # --api-port 8000
  25. # volumes:
  26. # - ./models:/root/.cache/huggingface
  27. #
  28. # # vLLM - Qwen3 8B
  29. # vllm-8b:
  30. # image: vllm/vllm-openai:latest
  31. # container_name: vllm-qwen3-8b
  32. # ports:
  33. # - "8300:8000"
  34. # command: >
  35. # --model Qwen/Qwen3-Embedding-8B
  36. # --dtype float16
  37. # --api-port 8000
  38. # volumes:
  39. # - ./models:/root/.cache/huggingface
  40. # Milvus 向量数据库
  41. milvus:
  42. image: registry.cn-hangzhou.aliyuncs.com/milvusdb/milvus:2.4.0
  43. container_name: milvus
  44. ports:
  45. - "19530:19530"
  46. - "9091:9091"
  47. environment:
  48. - ETCD_USE_EMBED=true
  49. - MINIO_USE_EMBED=true
  50. - PULSAR_USE_EMBED=true
  51. volumes:
  52. - ./milvus_data:/var/lib/milvus