functions.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. """
  2. @author: luojunhui
  3. """
  4. import jieba.analyse
  5. import pandas as pd
  6. from .model_init import models
  7. class ParamProcess(object):
  8. """
  9. 处理 params, 继承 models
  10. """
  11. def __init__(self):
  12. self.model_v1 = models.model_v1
  13. self.model_v2 = models.model_v2
  14. self.label_encoder = models.label_encoder
  15. async def title_to_tags(self, features):
  16. """
  17. process video title to tags and transform features_json_to_dataFrame
  18. :param features:
  19. :return:
  20. """
  21. title = features['title']
  22. if title:
  23. title = title.strip()
  24. title_tags = list(jieba.analyse.textrank(title, topK=3))
  25. if title_tags:
  26. for i in range(3):
  27. try:
  28. features['tag_{}'.format(i + 1)] = title_tags[i]
  29. except:
  30. features['tag_{}'.format(i + 1)] = None
  31. else:
  32. features['tag_1'] = None
  33. features['tag_2'] = None
  34. features['tag_3'] = None
  35. df = pd.DataFrame(features)
  36. df.drop('title', axis=1)
  37. return df
  38. async def predict_score(self, version, features):
  39. """
  40. 预测
  41. :param version: 模型版本
  42. :param features: 视频被 label_encoder 之后的features
  43. :return: score: 返回的分数
  44. """
  45. match version:
  46. case "v1":
  47. result = await self.model_v1(features)
  48. print(result)
  49. return result
  50. case "v2":
  51. result = await self.model_v2.predict(features)
  52. return result
  53. async def process_label(self, params):
  54. """
  55. 处理类别 features 和 float features
  56. :param params: 接收到的参数
  57. :return:
  58. """
  59. version = params['version']
  60. features = params['features']
  61. features = await self.title_to_tags(features)
  62. match version:
  63. case "v1":
  64. # 全部转化为类别
  65. str_column = [
  66. "channel",
  67. "type",
  68. "tag1",
  69. "tag2",
  70. "tag3"
  71. ]
  72. for key in str_column:
  73. features[key] = self.label_encoder.fit_transform(features[key])
  74. return version, features
  75. case "v2":
  76. float_column = ["out_play_cnt", "out_like_cnt", "out_share_cnt", "lop", "duration"]
  77. str_column = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
  78. for key in float_column:
  79. features[key] = pd.to_numeric(features[key], errors="coerce")
  80. for key in str_column:
  81. features[key] = self.label_encoder.fit_transform(features[key])
  82. return version, features
  83. async def process(self, params):
  84. """
  85. 处理
  86. :param params:
  87. :return:
  88. """
  89. version, features = await self.process_label(params)
  90. print(version, features)
  91. return await self.predict_score(version, features)