123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- """
- @author: luojunhui
- """
- import jieba.analyse
- import pandas as pd
- from .model_init import models
- class ParamProcess(object):
- """
- 处理 params, 继承 models
- """
- def __init__(self):
- self.model_v1 = models.model_v1
- self.model_v2 = models.model_v2
- self.label_encoder = models.label_encoder
- async def title_to_tags(self, features):
- """
- process video title to tags and transform features_json_to_dataFrame
- :param features:
- :return:
- """
- title = features['title']
- if title:
- title = title.strip()
- title_tags = list(jieba.analyse.textrank(title, topK=3))
- if title_tags:
- for i in range(3):
- try:
- features['tag{}'.format(i + 1)] = title_tags[i]
- except:
- features['tag_{}'.format(i + 1)] = None
- else:
- features['tag1'] = None
- features['tag2'] = None
- features['tag3'] = None
- df = pd.DataFrame([features])
- print("data_frame", df.columns)
- df.drop('title', axis=1)
- return df
- async def predict_score(self, version, features):
- """
- 预测
- :param version: 模型版本
- :param features: 视频被 label_encoder 之后的features
- :return: score: 返回的分数
- """
- match version:
- case "v1":
- result = await self.model_v1(features)
- print(result)
- return result
- case "v2":
- result = await self.model_v2.predict(features)
- return result
- async def process_label(self, params):
- """
- 处理类别 features 和 float features
- :param params: 接收到的参数
- :return:
- """
- version = params['version']
- features = params['features']
- features = await self.title_to_tags(features)
- match version:
- case "v1":
- # 全部转化为类别
- str_column = [
- "channel",
- "type",
- "tag1",
- "tag2",
- "tag3"
- ]
- for key in str_column:
- features[key] = self.label_encoder.fit_transform(features[key])
- return version, features
- case "v2":
- float_column = ["out_play_cnt", "out_like_cnt", "out_share_cnt", "lop", "duration"]
- str_column = ["channel", "mode", "out_user_id", "tag1", "tag2", "tag3"]
- for key in float_column:
- features[key] = pd.to_numeric(features[key], errors="coerce")
- for key in str_column:
- features[key] = self.label_encoder.fit_transform(features[key])
- return version, features
- async def process(self, params):
- """
- 处理
- :param params:
- :return:
- """
- version, features = await self.process_label(params)
- print(version, features)
- return await self.predict_score(version, features)
|