| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 |
- import math
- import random
- import torch
- from torch import nn
- from torch.nn import functional as F
- from .stylegan2_clean_arch import StyleGAN2GeneratorClean
- class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
- """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
- It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
- Args:
- out_size (int): The spatial size of outputs.
- num_style_feat (int): Channel number of style features. Default: 512.
- num_mlp (int): Layer number of MLP style layers. Default: 8.
- channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
- narrow (float): The narrow ratio for channels. Default: 1.
- sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
- """
- def __init__(
- self,
- out_size,
- num_style_feat=512,
- num_mlp=8,
- channel_multiplier=2,
- narrow=1,
- sft_half=False,
- ):
- super(StyleGAN2GeneratorCSFT, self).__init__(
- out_size,
- num_style_feat=num_style_feat,
- num_mlp=num_mlp,
- channel_multiplier=channel_multiplier,
- narrow=narrow,
- )
- self.sft_half = sft_half
- def forward(
- self,
- styles,
- conditions,
- input_is_latent=False,
- noise=None,
- randomize_noise=True,
- truncation=1,
- truncation_latent=None,
- inject_index=None,
- return_latents=False,
- ):
- """Forward function for StyleGAN2GeneratorCSFT.
- Args:
- styles (list[Tensor]): Sample codes of styles.
- conditions (list[Tensor]): SFT conditions to generators.
- input_is_latent (bool): Whether input is latent style. Default: False.
- noise (Tensor | None): Input noise or None. Default: None.
- randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
- truncation (float): The truncation ratio. Default: 1.
- truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
- inject_index (int | None): The injection index for mixing noise. Default: None.
- return_latents (bool): Whether to return style latents. Default: False.
- """
- # style codes -> latents with Style MLP layer
- if not input_is_latent:
- styles = [self.style_mlp(s) for s in styles]
- # noises
- if noise is None:
- if randomize_noise:
- noise = [None] * self.num_layers # for each style conv layer
- else: # use the stored noise
- noise = [
- getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
- ]
- # style truncation
- if truncation < 1:
- style_truncation = []
- for style in styles:
- style_truncation.append(
- truncation_latent + truncation * (style - truncation_latent)
- )
- styles = style_truncation
- # get style latents with injection
- if len(styles) == 1:
- inject_index = self.num_latent
- if styles[0].ndim < 3:
- # repeat latent code for all the layers
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
- else: # used for encoder with different latent code for each layer
- latent = styles[0]
- elif len(styles) == 2: # mixing noises
- if inject_index is None:
- inject_index = random.randint(1, self.num_latent - 1)
- latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
- latent2 = (
- styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
- )
- latent = torch.cat([latent1, latent2], 1)
- # main generation
- out = self.constant_input(latent.shape[0])
- out = self.style_conv1(out, latent[:, 0], noise=noise[0])
- skip = self.to_rgb1(out, latent[:, 1])
- i = 1
- for conv1, conv2, noise1, noise2, to_rgb in zip(
- self.style_convs[::2],
- self.style_convs[1::2],
- noise[1::2],
- noise[2::2],
- self.to_rgbs,
- ):
- out = conv1(out, latent[:, i], noise=noise1)
- # the conditions may have fewer levels
- if i < len(conditions):
- # SFT part to combine the conditions
- if self.sft_half: # only apply SFT to half of the channels
- out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
- out_sft = out_sft * conditions[i - 1] + conditions[i]
- out = torch.cat([out_same, out_sft], dim=1)
- else: # apply SFT to all the channels
- out = out * conditions[i - 1] + conditions[i]
- out = conv2(out, latent[:, i + 1], noise=noise2)
- skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
- i += 2
- image = skip
- if return_latents:
- return image, latent
- else:
- return image, None
- class ResBlock(nn.Module):
- """Residual block with bilinear upsampling/downsampling.
- Args:
- in_channels (int): Channel number of the input.
- out_channels (int): Channel number of the output.
- mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
- """
- def __init__(self, in_channels, out_channels, mode="down"):
- super(ResBlock, self).__init__()
- self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
- self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
- self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
- if mode == "down":
- self.scale_factor = 0.5
- elif mode == "up":
- self.scale_factor = 2
- def forward(self, x):
- out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
- # upsample/downsample
- out = F.interpolate(
- out, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
- )
- out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
- # skip
- x = F.interpolate(
- x, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
- )
- skip = self.skip(x)
- out = out + skip
- return out
- class GFPGANv1Clean(nn.Module):
- """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
- It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
- Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
- Args:
- out_size (int): The spatial size of outputs.
- num_style_feat (int): Channel number of style features. Default: 512.
- channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
- decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
- fix_decoder (bool): Whether to fix the decoder. Default: True.
- num_mlp (int): Layer number of MLP style layers. Default: 8.
- input_is_latent (bool): Whether input is latent style. Default: False.
- different_w (bool): Whether to use different latent w for different layers. Default: False.
- narrow (float): The narrow ratio for channels. Default: 1.
- sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
- """
- def __init__(
- self,
- out_size,
- num_style_feat=512,
- channel_multiplier=1,
- decoder_load_path=None,
- fix_decoder=True,
- # for stylegan decoder
- num_mlp=8,
- input_is_latent=False,
- different_w=False,
- narrow=1,
- sft_half=False,
- ):
- super(GFPGANv1Clean, self).__init__()
- self.input_is_latent = input_is_latent
- self.different_w = different_w
- self.num_style_feat = num_style_feat
- unet_narrow = narrow * 0.5 # by default, use a half of input channels
- channels = {
- "4": int(512 * unet_narrow),
- "8": int(512 * unet_narrow),
- "16": int(512 * unet_narrow),
- "32": int(512 * unet_narrow),
- "64": int(256 * channel_multiplier * unet_narrow),
- "128": int(128 * channel_multiplier * unet_narrow),
- "256": int(64 * channel_multiplier * unet_narrow),
- "512": int(32 * channel_multiplier * unet_narrow),
- "1024": int(16 * channel_multiplier * unet_narrow),
- }
- self.log_size = int(math.log(out_size, 2))
- first_out_size = 2 ** (int(math.log(out_size, 2)))
- self.conv_body_first = nn.Conv2d(3, channels[f"{first_out_size}"], 1)
- # downsample
- in_channels = channels[f"{first_out_size}"]
- self.conv_body_down = nn.ModuleList()
- for i in range(self.log_size, 2, -1):
- out_channels = channels[f"{2**(i - 1)}"]
- self.conv_body_down.append(ResBlock(in_channels, out_channels, mode="down"))
- in_channels = out_channels
- self.final_conv = nn.Conv2d(in_channels, channels["4"], 3, 1, 1)
- # upsample
- in_channels = channels["4"]
- self.conv_body_up = nn.ModuleList()
- for i in range(3, self.log_size + 1):
- out_channels = channels[f"{2**i}"]
- self.conv_body_up.append(ResBlock(in_channels, out_channels, mode="up"))
- in_channels = out_channels
- # to RGB
- self.toRGB = nn.ModuleList()
- for i in range(3, self.log_size + 1):
- self.toRGB.append(nn.Conv2d(channels[f"{2**i}"], 3, 1))
- if different_w:
- linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
- else:
- linear_out_channel = num_style_feat
- self.final_linear = nn.Linear(channels["4"] * 4 * 4, linear_out_channel)
- # the decoder: stylegan2 generator with SFT modulations
- self.stylegan_decoder = StyleGAN2GeneratorCSFT(
- out_size=out_size,
- num_style_feat=num_style_feat,
- num_mlp=num_mlp,
- channel_multiplier=channel_multiplier,
- narrow=narrow,
- sft_half=sft_half,
- )
- # load pre-trained stylegan2 model if necessary
- if decoder_load_path:
- self.stylegan_decoder.load_state_dict(
- torch.load(
- decoder_load_path, map_location=lambda storage, loc: storage
- )["params_ema"]
- )
- # fix decoder without updating params
- if fix_decoder:
- for _, param in self.stylegan_decoder.named_parameters():
- param.requires_grad = False
- # for SFT modulations (scale and shift)
- self.condition_scale = nn.ModuleList()
- self.condition_shift = nn.ModuleList()
- for i in range(3, self.log_size + 1):
- out_channels = channels[f"{2**i}"]
- if sft_half:
- sft_out_channels = out_channels
- else:
- sft_out_channels = out_channels * 2
- self.condition_scale.append(
- nn.Sequential(
- nn.Conv2d(out_channels, out_channels, 3, 1, 1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
- )
- )
- self.condition_shift.append(
- nn.Sequential(
- nn.Conv2d(out_channels, out_channels, 3, 1, 1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
- )
- )
- def forward(
- self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
- ):
- """Forward function for GFPGANv1Clean.
- Args:
- x (Tensor): Input images.
- return_latents (bool): Whether to return style latents. Default: False.
- return_rgb (bool): Whether return intermediate rgb images. Default: True.
- randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
- """
- conditions = []
- unet_skips = []
- out_rgbs = []
- # encoder
- feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
- for i in range(self.log_size - 2):
- feat = self.conv_body_down[i](feat)
- unet_skips.insert(0, feat)
- feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
- # style code
- style_code = self.final_linear(feat.view(feat.size(0), -1))
- if self.different_w:
- style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
- # decode
- for i in range(self.log_size - 2):
- # add unet skip
- feat = feat + unet_skips[i]
- # ResUpLayer
- feat = self.conv_body_up[i](feat)
- # generate scale and shift for SFT layers
- scale = self.condition_scale[i](feat)
- conditions.append(scale.clone())
- shift = self.condition_shift[i](feat)
- conditions.append(shift.clone())
- # generate rgb images
- if return_rgb:
- out_rgbs.append(self.toRGB[i](feat))
- # decoder
- image, _ = self.stylegan_decoder(
- [style_code],
- conditions,
- return_latents=return_latents,
- input_is_latent=self.input_is_latent,
- randomize_noise=randomize_noise,
- )
- return image, out_rgbs
|