| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- import os
- import time
- import cv2
- import numpy as np
- import torch
- import torch.nn.functional as F
- from sorawm.iopaint.helper import download_model, get_cache_path_by_url, load_jit_model
- from sorawm.iopaint.schema import InpaintRequest
- from .base import InpaintModel
- ZITS_INPAINT_MODEL_URL = os.environ.get(
- "ZITS_INPAINT_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
- )
- ZITS_INPAINT_MODEL_MD5 = os.environ.get(
- "ZITS_INPAINT_MODEL_MD5", "9978cc7157dc29699e42308d675b2154"
- )
- ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
- "ZITS_EDGE_LINE_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
- )
- ZITS_EDGE_LINE_MODEL_MD5 = os.environ.get(
- "ZITS_EDGE_LINE_MODEL_MD5", "55e31af21ba96bbf0c80603c76ea8c5f"
- )
- ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
- "ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
- )
- ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5 = os.environ.get(
- "ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5", "3d88a07211bd41b2ec8cc0d999f29927"
- )
- ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
- "ZITS_WIRE_FRAME_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
- )
- ZITS_WIRE_FRAME_MODEL_MD5 = os.environ.get(
- "ZITS_WIRE_FRAME_MODEL_MD5", "a9727c63a8b48b65c905d351b21ce46b"
- )
- def resize(img, height, width, center_crop=False):
- imgh, imgw = img.shape[0:2]
- if center_crop and imgh != imgw:
- # center crop
- side = np.minimum(imgh, imgw)
- j = (imgh - side) // 2
- i = (imgw - side) // 2
- img = img[j : j + side, i : i + side, ...]
- if imgh > height and imgw > width:
- inter = cv2.INTER_AREA
- else:
- inter = cv2.INTER_LINEAR
- img = cv2.resize(img, (height, width), interpolation=inter)
- return img
- def to_tensor(img, scale=True, norm=False):
- if img.ndim == 2:
- img = img[:, :, np.newaxis]
- c = img.shape[-1]
- if scale:
- img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255)
- else:
- img_t = torch.from_numpy(img).permute(2, 0, 1).float()
- if norm:
- mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
- std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
- img_t = (img_t - mean) / std
- return img_t
- def load_masked_position_encoding(mask):
- ones_filter = np.ones((3, 3), dtype=np.float32)
- d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
- d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
- d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
- d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
- str_size = 256
- pos_num = 128
- ori_mask = mask.copy()
- ori_h, ori_w = ori_mask.shape[0:2]
- ori_mask = ori_mask / 255
- mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
- mask[mask > 0] = 255
- h, w = mask.shape[0:2]
- mask3 = mask.copy()
- mask3 = 1.0 - (mask3 / 255.0)
- pos = np.zeros((h, w), dtype=np.int32)
- direct = np.zeros((h, w, 4), dtype=np.int32)
- i = 0
- while np.sum(1 - mask3) > 0:
- i += 1
- mask3_ = cv2.filter2D(mask3, -1, ones_filter)
- mask3_[mask3_ > 0] = 1
- sub_mask = mask3_ - mask3
- pos[sub_mask == 1] = i
- m = cv2.filter2D(mask3, -1, d_filter1)
- m[m > 0] = 1
- m = m - mask3
- direct[m == 1, 0] = 1
- m = cv2.filter2D(mask3, -1, d_filter2)
- m[m > 0] = 1
- m = m - mask3
- direct[m == 1, 1] = 1
- m = cv2.filter2D(mask3, -1, d_filter3)
- m[m > 0] = 1
- m = m - mask3
- direct[m == 1, 2] = 1
- m = cv2.filter2D(mask3, -1, d_filter4)
- m[m > 0] = 1
- m = m - mask3
- direct[m == 1, 3] = 1
- mask3 = mask3_
- abs_pos = pos.copy()
- rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1
- rel_pos = (rel_pos * pos_num).astype(np.int32)
- rel_pos = np.clip(rel_pos, 0, pos_num - 1)
- if ori_w != w or ori_h != h:
- rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
- rel_pos[ori_mask == 0] = 0
- direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
- direct[ori_mask == 0, :] = 0
- return rel_pos, abs_pos, direct
- def load_image(img, mask, device, sigma256=3.0):
- """
- Args:
- img: [H, W, C] RGB
- mask: [H, W] 255 为 masks 区域
- sigma256:
- Returns:
- """
- h, w, _ = img.shape
- imgh, imgw = img.shape[0:2]
- img_256 = resize(img, 256, 256)
- mask = (mask > 127).astype(np.uint8) * 255
- mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA)
- mask_256[mask_256 > 0] = 255
- mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA)
- mask_512[mask_512 > 0] = 255
- # original skimage implemention
- # https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
- # low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
- # high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
- try:
- import skimage
- gray_256 = skimage.color.rgb2gray(img_256)
- edge_256 = skimage.feature.canny(gray_256, sigma=3.0, mask=None).astype(float)
- # cv2.imwrite("skimage_gray.jpg", (gray_256*255).astype(np.uint8))
- # cv2.imwrite("skimage_edge.jpg", (edge_256*255).astype(np.uint8))
- except:
- gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
- gray_256_blured = cv2.GaussianBlur(
- gray_256, ksize=(7, 7), sigmaX=sigma256, sigmaY=sigma256
- )
- edge_256 = cv2.Canny(
- gray_256_blured, threshold1=int(255 * 0.1), threshold2=int(255 * 0.2)
- )
- # cv2.imwrite("opencv_edge.jpg", edge_256)
- # line
- img_512 = resize(img, 512, 512)
- rel_pos, abs_pos, direct = load_masked_position_encoding(mask)
- batch = dict()
- batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device)
- batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device)
- batch["masks"] = to_tensor(mask).unsqueeze(0).to(device)
- batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device)
- batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device)
- batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device)
- batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device)
- batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device)
- batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device)
- batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device)
- batch["h"] = imgh
- batch["w"] = imgw
- return batch
- def to_device(data, device):
- if isinstance(data, torch.Tensor):
- return data.to(device)
- if isinstance(data, dict):
- for key in data:
- if isinstance(data[key], torch.Tensor):
- data[key] = data[key].to(device)
- return data
- if isinstance(data, list):
- return [to_device(d, device) for d in data]
- class ZITS(InpaintModel):
- name = "zits"
- min_size = 256
- pad_mod = 32
- pad_to_square = True
- is_erase_model = True
- def __init__(self, device, **kwargs):
- """
- Args:
- device:
- """
- super().__init__(device)
- self.device = device
- self.sample_edge_line_iterations = 1
- def init_model(self, device, **kwargs):
- self.wireframe = load_jit_model(
- ZITS_WIRE_FRAME_MODEL_URL, device, ZITS_WIRE_FRAME_MODEL_MD5
- )
- self.edge_line = load_jit_model(
- ZITS_EDGE_LINE_MODEL_URL, device, ZITS_EDGE_LINE_MODEL_MD5
- )
- self.structure_upsample = load_jit_model(
- ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device, ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5
- )
- self.inpaint = load_jit_model(
- ZITS_INPAINT_MODEL_URL, device, ZITS_INPAINT_MODEL_MD5
- )
- @staticmethod
- def download():
- download_model(ZITS_WIRE_FRAME_MODEL_URL, ZITS_WIRE_FRAME_MODEL_MD5)
- download_model(ZITS_EDGE_LINE_MODEL_URL, ZITS_EDGE_LINE_MODEL_MD5)
- download_model(
- ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5
- )
- download_model(ZITS_INPAINT_MODEL_URL, ZITS_INPAINT_MODEL_MD5)
- @staticmethod
- def is_downloaded() -> bool:
- model_paths = [
- get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL),
- get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL),
- get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL),
- get_cache_path_by_url(ZITS_INPAINT_MODEL_URL),
- ]
- return all([os.path.exists(it) for it in model_paths])
- def wireframe_edge_and_line(self, items, enable: bool):
- # 最终向 items 中添加 edge 和 line key
- if not enable:
- items["edge"] = torch.zeros_like(items["masks"])
- items["line"] = torch.zeros_like(items["masks"])
- return
- start = time.time()
- try:
- line_256 = self.wireframe_forward(
- items["img_512"],
- h=256,
- w=256,
- masks=items["mask_512"],
- mask_th=0.85,
- )
- except:
- line_256 = torch.zeros_like(items["mask_256"])
- print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms")
- # np_line = (line[0][0].numpy() * 255).astype(np.uint8)
- # cv2.imwrite("line.jpg", np_line)
- start = time.time()
- edge_pred, line_pred = self.sample_edge_line_logits(
- context=[items["img_256"], items["edge_256"], line_256],
- mask=items["mask_256"].clone(),
- iterations=self.sample_edge_line_iterations,
- add_v=0.05,
- mul_v=4,
- )
- print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms")
- # np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
- # cv2.imwrite("edge_pred.jpg", np_edge_pred)
- # np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
- # cv2.imwrite("line_pred.jpg", np_line_pred)
- # exit()
- input_size = min(items["h"], items["w"])
- if input_size != 256 and input_size > 256:
- while edge_pred.shape[2] < input_size:
- edge_pred = self.structure_upsample(edge_pred)
- edge_pred = torch.sigmoid((edge_pred + 2) * 2)
- line_pred = self.structure_upsample(line_pred)
- line_pred = torch.sigmoid((line_pred + 2) * 2)
- edge_pred = F.interpolate(
- edge_pred,
- size=(input_size, input_size),
- mode="bilinear",
- align_corners=False,
- )
- line_pred = F.interpolate(
- line_pred,
- size=(input_size, input_size),
- mode="bilinear",
- align_corners=False,
- )
- # np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
- # cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred)
- # np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
- # cv2.imwrite("line_pred_upsample.jpg", np_line_pred)
- # exit()
- items["edge"] = edge_pred.detach()
- items["line"] = line_pred.detach()
- @torch.no_grad()
- def forward(self, image, mask, config: InpaintRequest):
- """Input images and output images have same size
- images: [H, W, C] RGB
- masks: [H, W]
- return: BGR IMAGE
- """
- mask = mask[:, :, 0]
- items = load_image(image, mask, device=self.device)
- self.wireframe_edge_and_line(items, config.zits_wireframe)
- inpainted_image = self.inpaint(
- items["images"],
- items["masks"],
- items["edge"],
- items["line"],
- items["rel_pos"],
- items["direct"],
- )
- inpainted_image = inpainted_image * 255.0
- inpainted_image = (
- inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8)
- )
- inpainted_image = inpainted_image[:, :, ::-1]
- # cv2.imwrite("inpainted.jpg", inpainted_image)
- # exit()
- return inpainted_image
- def wireframe_forward(self, images, h, w, masks, mask_th=0.925):
- lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1)
- lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1)
- images = images * 255.0
- # the masks value of lcnn is 127.5
- masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5
- masked_images = (masked_images - lcnn_mean) / lcnn_std
- def to_int(x):
- return tuple(map(int, x))
- lines_tensor = []
- lmap = np.zeros((h, w))
- output_masked = self.wireframe(masked_images)
- output_masked = to_device(output_masked, "cpu")
- if output_masked["num_proposals"] == 0:
- lines_masked = []
- scores_masked = []
- else:
- lines_masked = output_masked["lines_pred"].numpy()
- lines_masked = [
- [line[1] * h, line[0] * w, line[3] * h, line[2] * w]
- for line in lines_masked
- ]
- scores_masked = output_masked["lines_score"].numpy()
- for line, score in zip(lines_masked, scores_masked):
- if score > mask_th:
- try:
- import skimage
- rr, cc, value = skimage.draw.line_aa(
- *to_int(line[0:2]), *to_int(line[2:4])
- )
- lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
- except:
- cv2.line(
- lmap,
- to_int(line[0:2][::-1]),
- to_int(line[2:4][::-1]),
- (1, 1, 1),
- 1,
- cv2.LINE_AA,
- )
- lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
- lines_tensor.append(to_tensor(lmap).unsqueeze(0))
- lines_tensor = torch.cat(lines_tensor, dim=0)
- return lines_tensor.detach().to(self.device)
- def sample_edge_line_logits(
- self, context, mask=None, iterations=1, add_v=0, mul_v=4
- ):
- [img, edge, line] = context
- img = img * (1 - mask)
- edge = edge * (1 - mask)
- line = line * (1 - mask)
- for i in range(iterations):
- edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask)
- edge_pred = torch.sigmoid(edge_logits)
- line_pred = torch.sigmoid((line_logits + add_v) * mul_v)
- edge = edge + edge_pred * mask
- edge[edge >= 0.25] = 1
- edge[edge < 0.25] = 0
- line = line + line_pred * mask
- b, _, h, w = edge_pred.shape
- edge_pred = edge_pred.reshape(b, -1, 1)
- line_pred = line_pred.reshape(b, -1, 1)
- mask = mask.reshape(b, -1)
- edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1)
- line_probs = torch.cat([1 - line_pred, line_pred], dim=-1)
- edge_probs[:, :, 1] += 0.5
- line_probs[:, :, 1] += 0.5
- edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100)
- line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100)
- indices = torch.sort(
- edge_max_probs + line_max_probs, dim=-1, descending=True
- )[1]
- for ii in range(b):
- keep = int((i + 1) / iterations * torch.sum(mask[ii, ...]))
- assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!"
- mask[ii][indices[ii, :keep]] = 0
- mask = mask.reshape(b, 1, h, w)
- edge = edge * (1 - mask)
- line = line * (1 - mask)
- edge, line = edge.to(torch.float32), line.to(torch.float32)
- return edge, line
|